50 resultados para phytochrome forms

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) receptor imaging is superior to somatostatin receptor subtype 2 (sst(2)) imaging in localizing benign insulinomas. Here, the role of GLP-1 and sst(2) receptor imaging in the management of malignant insulinoma patients was investigated.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arterial hypertension in childhood is less frequent as compared to adulthood but is more likely to be secondary to an underlying disorder. After ruling out more obvious causes, some patients still present with strongly suspected secondary hypertension of yet unknown etiology. A number of these children have hypertension due to single gene mutations inherited in an autosomal dominant or recessive fashion. The finding of abnormal potassium levels (low or high) in the presence of suppressed renin secretion, and metabolic alkalosis or acidosis should prompt consideration of these familial diseases. However, mild hypertension and the absence of electrolyte abnormalities do not exclude hereditary conditions. In monogenic hypertensive disorders, three distinct mechanisms leading to the common final pathway of increased sodium reabsorption, volume expansion, and low plasma renin activity are documented. The first mechanism relates to gain-of-function mutations with a subsequent hyperactivity of renal sodium and chloride reabsorption leading to plasma volume expansion (e.g., Liddle's syndrome, Gordon's syndrome). The second mechanism involves deficiencies of enzymes that regulate adrenal steroid hormone synthesis and deactivation (e.g., subtypes of congenital adrenal hyperplasia, apparent mineralocorticoid excess (AME)). The third mechanism is characterized by excessive aldosterone synthesis that escapes normal regulatory mechanisms and leading to volume-dependent hypertension in the presence of suppressed renin release (glucocorticoid remediable aldosteronism). Hormonal studies coupled with genetic testing can help in the early diagnosis of these disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vascular-disrupting agents like combretastatin (CA-4-P), used to attenuate tumor blood flow in vivo, exert anti-mitotic and anti-migratory effects on endothelial cells in vitro. We tested whether anti-vascular or anti-angiogenic effects of CA-4-P are evident with physiological angiogenesis in skeletal muscle (EDL) due to sustained hyperemia (intraluminal splitting) and chronic muscle overload (abluminal sprouting).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of indigenous knowledge and ethnoscientific approaches into contemporary frameworks for conservation and sustainable management of natural resources will become increasingly important in policies on an international and national level. We set the scene on how this can be done by exploring the key conditions and dimensions of a dialogue between ‘ontologies’ and the roles, which ethnosciences could play in this process. First, the roles which ethnosciences in the context of sustainable development were analysed, placing emphasis on the implications arising when western sciences aspire to relate to indigenous forms of knowledge. Secondly, the contributions of ethnosciences to such an ‘inter-ontological dialogue’ were explored, based on an ethnoecological study of the encounter of sciences and indigenous knowledge in the Andes of Bolivia, and reviewed experiences from mangrove systems in Kenya, India and Sri Lanka, and from case-studies in other ecosystems world-wide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In adult skeletal muscle, abluminal sprouting or longitudinal splitting of capillaries can be initiated separately by muscle overload and elevated microcirculation shear stress respectively. In the present study, gene and protein expression patterns associated with the different forms of angiogenesis were examined using a targeted gene array (Superarray), validated by quantitative RT (reverse transcription)-PCR and immunoblots. Sprouting angiogenesis induced large changes in expression levels in genes associated with extracellular matrix remodelling, such as MMP-2 (matrix metalloproteinase-2), TIMP (tissue inhibitor of metalloproteinases), SPARC (secreted protein, acidic and rich in cysteine) and thrombospondin. Changes in neuropilin, midkine and restin levels, which may underpin changes in endothelial morphology, were seen during splitting angiogenesis. Up-regulation of VEGF (vascular endothelial growth factor), Flk-1, angiopoietin-2 and PECAM-1 (platelet/endothelial cell adhesion molecule-1) was seen in both forms of angiogenesis, representing a common angiogenic response of endothelial cells. In conclusion, the present study demonstrates that general angiogenic signals from growth factors can be influenced by the local microenvironment resulting in differing forms of capillary growth to produce a co-ordinated expansion of the vascular bed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

African trypanosomes undergo differentiation in order to adapt to the mammalian host and the tsetse fly vector. To characterize the role of a mitogen-activated protein (MAP) kinase homologue, TbMAPK5, in the differentiation of Trypanosoma brucei, we constructed a knockout in procyclic (insect) forms from a differentiation-competent (pleomorphic) stock. Two independent knockout clones proliferated normally in culture and were not essential for other life cycle stages in the fly. They were also able to infect immunosuppressed mice, but the peak parasitemia was 16-fold lower than that of the wild type. Differentiation of the proliferating long slender to the nonproliferating short stumpy bloodstream form is triggered by an autocrine factor, stumpy induction factor (SIF). The knockout differentiated prematurely in mice and in culture, suggestive of increased sensitivity to SIF. In contrast, a null mutant of a cell line refractory to SIF was able to proliferate normally. The differentiation phenotype was partially rescued by complementation with wild-type TbMAPK5 but exacerbated by introduction of a nonactivatable mutant form. Our results indicate a regulatory function for TbMAPK5 in the differentiation of bloodstream forms of T. brucei that might be exploitable as a target for chemotherapy against human sleeping sickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tsetse fly, the protozoan parasite Trypanosoma congolense is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These include a protease-resistant surface molecule (PRS), which is expressed by procyclic forms early in infection, and a glutamic acid- and alanine-rich protein (GARP), which appears at later stages. Since neither of these surface antigens is expressed at intermediate stages, we investigated whether a GPI-anchored protein of 50 to 58 kDa, previously detected in procyclic culture forms, might constitute the coat of these parasites. We therefore partially purified the protein from T. congolense Kilifi procyclic forms, obtained an N-terminal amino acid sequence, and identified its gene. Detailed analyses showed that the mature protein consists almost exclusively of 13 heptapeptide repeats (EPGENGT). The protein is densely N glycosylated, with up to 13 high-mannose oligosaccharides ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2) linked to the peptide repeats. The lipid moiety of the glycosylphosphatidylinositol is composed of sn-1-stearoyl-2-lyso-glycerol-3-HPO(4)-1-(2-O-acyl)-d-myo-inositol. Heavily glycosylated proteins with similar repeats were subsequently identified in T. congolense Savannah procyclic forms. Collectively, this group of proteins was named T. congolense procyclins to reflect their relationship to the EP and GPEET procyclins of T. brucei. Using an antiserum raised against the EPGENGT repeat, we show that T. congolense procyclins are expressed continuously in the fly midgut and thus form the surface coat of cells that are negative for both PRS and GARP.