3 resultados para physiological maturation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DC) are professional antigen presenting cells that represent an important link between innate and adaptive immunity. Danger signals such as toll-like receptor (TLR) agonists induce maturation of DC leading to a T-cell mediated adaptive immune response. In this study, we show that exogenous as well as endogenous inflammatory stimuli for TLR4 and TLR2 induce the expression of HIF-1alpha in human monocyte-derived DC under normoxic conditions. On the functional level, inhibition of HIF-1alpha using chetomin (CTM), YC-1 and digoxin lead to no consistent effect on MoDC maturation, or cytokine secretion despite having the common effect of blocking HIF-1alpha stabilization or activity through different mechanisms. Stabilization of HIF-1alpha protein by hypoxia or CoCl(2) did not result in maturation of human DC. In addition, we could show that TLR stimulation resulted in an increase of HIF-1alpha controlled VEGF secretion. These results show that stimulation of human MoDC with exogenous as well as endogenous TLR agonists induces the expression of HIF-1alpha in a time-dependent manner. Hypoxia alone does not induce maturation of DC, but is able to augment maturation after TLR ligation. Current evidence suggests that different target genes may be affected by HIF-1alpha under normoxic conditions with physiological roles that differ from those induced by hypoxia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Qualitative assessment of spontaneous motor activity in early infancy is widely used in clinical practice. It enables the description of maturational changes of motor behavior in both healthy infants and infants who are at risk for later neurological impairment. These assessments are, however, time-consuming and are dependent upon professional experience. Therefore, a simple physiological method that describes the complex behavior of spontaneous movements (SMs) in infants would be helpful. In this methodological study, we aimed to determine whether time series of motor acceleration measurements at 40-44 weeks and 50-55 weeks gestational age in healthy infants exhibit fractal-like properties and if this self-affinity of the acceleration signal is sensitive to maturation. Healthy motor state was ensured by General Movement assessment. We assessed statistical persistence in the acceleration time series by calculating the scaling exponent α via detrended fluctuation analysis of the time series. In hand trajectories of SMs in infants we found a mean α value of 1.198 (95 % CI 1.167-1.230) at 40-44 weeks. Alpha changed significantly (p = 0.001) at 50-55 weeks to a mean of 1.102 (1.055-1.149). Complementary multilevel regression analysis confirmed a decreasing trend of α with increasing age. Statistical persistence of fluctuation in hand trajectories of SMs is sensitive to neurological maturation and can be characterized by a simple parameter α in an automated and observer-independent fashion. Future studies including children at risk for neurological impairment should evaluate whether this method could be used as an early clinical screening tool for later neurological compromise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW Neutrophil extravasation from the blood into tissues is initiated by tethering and rolling of neutrophils on endothelial cells, followed by neutrophil integrin activation and shear resistant arrest, crawling, diapedesis and breaching the endothelial basement membrane harbouring pericytes. Endothelial intercellular cell adhesion molecule (ICAM)-1 and ICAM-2, in conjunction with ICAM-1 on pericytes, critically contribute to each step. In addition, epithelial ICAM-1 is involved in neutrophil migration to peri-epithelial sites. The most recent findings on the role of ICAM-1 and ICAM-2 for neutrophil migration into tissues will be reviewed here. RECENT FINDINGS Signalling via endothelial ICAM-1 and ICAM-2 contributes to stiffness of the endothelial cells at sites of chronic inflammation and junctional maturation, respectively. Endothelial ICAM-2 contributes to neutrophil crawling and initiation of paracellular diapedesis, which then proceeds independent of ICAM-2. Substantial transcellular neutrophil diapedesis across the blood-brain barrier is strictly dependent on endothelial ICAM-1 and ICAM-2. Endothelial ICAM-1 or ICAM-2 is involved in neutrophil-mediated plasma leakage. ICAM-1 on pericytes assists the final step of neutrophil extravasation. Epithelial ICAM-1 rather indirectly promotes neutrophil migration to peri-epithelial sites. SUMMARY ICAM-1 and ICAM-2 are involved in each step of neutrophil extravasation, and have redundant but also distinct functions. Analysis of the role of endothelial ICAM-1 requires simultaneous consideration of ICAM-2.