2 resultados para photonic integrated circuit

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE The purpose of this study was to investigate the feasibility of microdose CT using a comparable dose as for conventional chest radiographs in two planes including dual-energy subtraction for lung nodule assessment. MATERIALS AND METHODS We investigated 65 chest phantoms with 141 lung nodules, using an anthropomorphic chest phantom with artificial lung nodules. Microdose CT parameters were 80 kV and 6 mAs, with pitch of 2.2. Iterative reconstruction algorithms and an integrated circuit detector system (Stellar, Siemens Healthcare) were applied for maximum dose reduction. Maximum intensity projections (MIPs) were reconstructed. Chest radiographs were acquired in two projections with bone suppression. Four blinded radiologists interpreted the images in random order. RESULTS A soft-tissue CT kernel (I30f) delivered better sensitivities in a pilot study than a hard kernel (I70f), with respective mean (SD) sensitivities of 91.1% ± 2.2% versus 85.6% ± 5.6% (p = 0.041). Nodule size was measured accurately for all kernels. Mean clustered nodule sensitivity with chest radiography was 45.7% ± 8.1% (with bone suppression, 46.1% ± 8%; p = 0.94); for microdose CT, nodule sensitivity was 83.6% ± 9% without MIP (with additional MIP, 92.5% ± 6%; p < 10(-3)). Individual sensitivities of microdose CT for readers 1, 2, 3, and 4 were 84.3%, 90.7%, 68.6%, and 45.0%, respectively. Sensitivities with chest radiography for readers 1, 2, 3, and 4 were 42.9%, 58.6%, 36.4%, and 90.7%, respectively. In the per-phantom analysis, respective sensitivities of microdose CT versus chest radiography were 96.2% and 75% (p < 10(-6)). The effective dose for chest radiography including dual-energy subtraction was 0.242 mSv; for microdose CT, the applied dose was 0.1323 mSv. CONCLUSION Microdose CT is better than the combination of chest radiography and dual-energy subtraction for the detection of solid nodules between 5 and 12 mm at a lower dose level of 0.13 mSv. Soft-tissue kernels allow better sensitivities. These preliminary results indicate that microdose CT has the potential to replace conventional chest radiography for lung nodule detection.