54 resultados para phone tapping
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Source of funding in experimental studies of mobile phone use on health: Update of systematic review
Resumo:
A previous review showed that among 59 studies published in 1995–2005, industry-funded studies were least likely to report effects of controlled exposure to mobile phone radiation on health-related outcomes. We updated literature searches in 2005–2009 and extracted data on funding, conflicts of interest and results. Of 75 additional studies 12% were industry-funded, 44% had public and 19% mixed funding; funding was unclear in 25%. Previous findings were confirmed: industry-sponsored studies were least likely to report results suggesting effects. Interestingly, the proportion of studies indicating effects declined in 1995–2009, regardless of funding source. Source of funding and conflicts of interest are important in this field of research.
Resumo:
Advances in the area of mobile and wireless communication for healthcare (m-Health) along with the improvements in information science allow the design and development of new patient-centric models for the provision of personalised healthcare services, increase of patient independence and improvement of patient's self-control and self-management capabilities. This paper comprises a brief overview of the m-Health applications towards the self-management of individuals with diabetes mellitus and the enhancement of their quality of life. Furthermore, the design and development of a mobile phone application for Type 1 Diabetes Mellitus (T1DM) self-management is presented. The technical evaluation of the application, which permits the management of blood glucose measurements, blood pressure measurements, insulin dosage, food/drink intake and physical activity, has shown that the use of the mobile phone technologies along with data analysis methods might improve the self-management of T1DM.
Resumo:
A growing body of literature addresses possible health effects of mobile phone use in children and adolescents by relying on the study participants' retrospective reconstruction of mobile phone use. In this study, we used data from the international case-control study CEFALO to compare self-reported with objectively operator-recorded mobile phone use. The aim of the study was to assess predictors of level of mobile phone use as well as factors that are associated with overestimating own mobile phone use. For cumulative number and duration of calls as well as for time since first subscription we calculated the ratio of self-reported to operator-recorded mobile phone use. We used multiple linear regression models to assess possible predictors of the average number and duration of calls per day and logistic regression models to assess possible predictors of overestimation. The cumulative number and duration of calls as well as the time since first subscription of mobile phones were overestimated on average by the study participants. Likelihood to overestimate number and duration of calls was not significantly different for controls compared to cases (OR=1.1, 95%-CI: 0.5 to 2.5 and OR=1.9, 95%-CI: 0.85 to 4.3, respectively). However, likelihood to overestimate was associated with other health related factors such as age and sex. As a consequence, such factors act as confounders in studies relying solely on self-reported mobile phone use and have to be considered in the analysis.
Resumo:
It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Resumo:
The increasing deployment of mobile communication base stations led to an increasing demand for epidemiological studies on possible health effects of radio frequency emissions. The methodological challenges of such studies have been critically evaluated by a panel of scientists in the fields of radiofrequency engineering/dosimetry and epidemiology. Strengths and weaknesses of previous studies have been identified. Dosimetric concepts and crucial aspects in exposure assessment were evaluated in terms of epidemiological studies on different types of outcomes. We conclude that in principle base station epidemiological studies are feasible. However, the exposure contributions from all relevant radio frequency sources have to be taken into account. The applied exposure assessment method should be piloted and validated. Short to medium term effects on physiology or health related quality of life are best investigated by cohort studies. For long term effects, groups with a potential for high exposure need to first be identified; for immediate effect, human laboratory studies are the preferred approach.