6 resultados para personal learning networks

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To interconnect a wireless sensor network (WSN) to the Internet, we propose to use TCP/IP as the standard protocol for all network entities. We present a cross layer designed communication architecture, which contains a MAC protocol, IP, a new protocol called Hop-to-Hop Reliability (H2HR) protocol, and the TCP Support for Sensor Nodes (TSS) protocol. The MAC protocol implements the MAC layer of beacon-less personal area networks (PANs) as defined in IEEE 802.15.4. H2HR implements hop-to-hop reliability mechanisms. Two acknowledgment mechanisms, explicit and implicit ACK are supported. TSS optimizes using TCP in WSNs by implementing local retransmission of TCP data packets, local TCP ACK regeneration, aggressive TCP ACK recovery, congestion and flow control algorithms. We show that H2HR increases the performance of UDP, TCP, and RMST in WSNs significantly. The throughput is increased and the packet loss ratio is decreased. As a result, WSNs can be operated and managed using TCP/IP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Type 1 diabetes mellitus is a chronic disease characterized by blood glucose levels out of normal range due to inability of insulin production. This dysfunction leads to many short- and long-term complications. In this paper, a system for tele-monitoring and tele-management of Type 1 diabetes patients is proposed, aiming at reducing the risk of diabetes complications and improving quality of life. The system integrates Wireless Personal Area Networks (WPAN), mobile infrastructure, and Internet technology along with commercially available and novel glucose measurement devices, advanced modeling techniques, and tools for the intelligent processing of the available diabetes patients information. The integration of the above technologies enables intensive monitoring of blood glucose levels, treatment optimisation, continuous medical care, and improvement of quality of life for Type 1 diabetes patients, without restrictions in everyday life activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Storing and recalling spiking sequences is a general problem the brain needs to solve. It is, however, unclear what type of biologically plausible learning rule is suited to learn a wide class of spatiotemporal activity patterns in a robust way. Here we consider a recurrent network of stochastic spiking neurons composed of both visible and hidden neurons. We derive a generic learning rule that is matched to the neural dynamics by minimizing an upper bound on the Kullback–Leibler divergence from the target distribution to the model distribution. The derived learning rule is consistent with spike-timing dependent plasticity in that a presynaptic spike preceding a postsynaptic spike elicits potentiation while otherwise depression emerges. Furthermore, the learning rule for synapses that target visible neurons can be matched to the recently proposed voltage-triplet rule. The learning rule for synapses that target hidden neurons is modulated by a global factor, which shares properties with astrocytes and gives rise to testable predictions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper addresses an investigation with machine learning (ML) classification techniques to assist in the problem of flash flood now casting. We have been attempting to build a Wireless Sensor Network (WSN) to collect measurements from a river located in an urban area. The machine learning classification methods were investigated with the aim of allowing flash flood now casting, which in turn allows the WSN to give alerts to the local population. We have evaluated several types of ML taking account of the different now casting stages (i.e. Number of future time steps to forecast). We have also evaluated different data representation to be used as input of the ML techniques. The results show that different data representation can lead to results significantly better for different stages of now casting.

Relevância:

40.00% 40.00%

Publicador: