2 resultados para persistency

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A die-off of passerine birds, mostly Eurasian siskins (Carduelis spinus), occurred in multiple areas of Switzerland between February and March 2010. Several of the dead birds were submitted for full necropsy. Bacteriological examination was carried out on multiple tissues of each bird. At gross examination, common findings were light-tan nodules, 1 to 4 mm in diameter, scattered through the esophagus/crop. Histologically, a necroulcerative transmural esophagitis/ingluvitis was observed. Bacterial cultures yielded Salmonella enterica subsp. enterica serovar Typhimurium. At the same time, 2 pet clinics reported an unusual increase of domestic cats presented with fever, anorexia, occasionally dolent abdomen, and history of presumed consumption of passerine birds. Analysis of rectal swabs revealed the presence of S. Typhimurium in all tested cats. PFGE (pulsed field electrophoresis) analysis was performed to characterize and compare the bacterial isolates, and it revealed an indistinguishable pattern between all the avian and all but 1 of the feline isolates. Cloacal swabs collected from clinically healthy migrating Eurasian siskins (during autumn 2010) did not yield S. Typhimurium. The histological and bacteriological findings were consistent with a systemic infection caused by S. Typhimurium. Isolation of the same serovar from the dead birds and ill cats, along with the overlapping results of the PFGE analysis for all the animal species, confirmed a spillover from birds to cats through predation. The sudden increase of the number of siskins over the Swiss territory and their persistency during the whole winter of 2009-2010 is considered the most likely predisposing factor for the onset of the epidemic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simulating the spatio-temporal dynamics of inundation is key to understanding the role of wetlands under past and future climate change. Earlier modelling studies have mostly relied on fixed prescribed peatland maps and inundation time series of limited temporal coverage. Here, we describe and assess the the Dynamical Peatland Model Based on TOPMODEL (DYPTOP), which predicts the extent of inundation based on a computationally efficient TOPMODEL implementation. This approach rests on an empirical, grid-cell-specific relationship between the mean soil water balance and the flooded area. DYPTOP combines the simulated inundation extent and its temporal persistency with criteria for the ecosystem water balance and the modelled peatland-specific soil carbon balance to predict the global distribution of peatlands. We apply DYPTOP in combination with the LPX-Bern DGVM and benchmark the global-scale distribution, extent, and seasonality of inundation against satellite data. DYPTOP successfully predicts the spatial distribution and extent of wetlands and major boreal and tropical peatland complexes and reveals the governing limitations to peatland occurrence across the globe. Peatlands covering large boreal lowlands are reproduced only when accounting for a positive feedback induced by the enhanced mean soil water holding capacity in peatland-dominated regions. DYPTOP is designed to minimize input data requirements, optimizes computational efficiency and allows for a modular adoption in Earth system models.