4 resultados para pcb

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 37 m deep ice core representing 1957–2009 and snow from 2009 to 2010 were collected on the Lomonosovfonna glacier, Svalbard (78.82° N; 17.43° E) and analyzed for 209 polychlorinated biphenyl (PCB) congeners using high-resolution mass spectrometry. Congener profiles in all samples showed the prevalence of tetra- and pentachlorobiphenyls, dominated in all samples by PCB-44, PCB-52, PCB-70 + PCB-74, PCB-87 + PCB-97, PCB-95, PCB-99, PCB-101, and PCB-110. The ∑PCB flux varied over time, but the peak flux, 19 pg cm–2 year–1 from 1957 to 1966, recurred in 1974–1983, 1998–2009, and 2009–2010. The minimum was 5.75 pg cm–2 year–1 in 1989–1998, following a 15 year decline. Peak ∑PCB fluxes here are lower than measured in the Canadian Arctic. The analysis of all 209 congeners revealed that PCB-11 (3,3′-dichlorobiphenyl) was present in all samples, representing 0.9–4.5% of ∑PCB. PCB-11 was not produced in a commercial PCB product, and its source to the Arctic has not been well-characterized; however, our results confirm that the sources to Lomonosovfonna have been active since 1957. The higher fluxes of ∑PCB correspond to periods when average 5 day air mass back trajectories have a frequency of 8–10% and reach 60° N or beyond over northern Europe and western Russia or the North Sea into the U.K

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In previous work, Alpine glaciers have been identified as a secondary source of persistent organic pollutants (POPs). However, detailed understanding of the processes organic chemicals undergo in a glacial system was missing. Here, we present results from a chemical fate model describing deposition and incorporation of polychlorinated biphenyls (PCBs) into an Alpine glacier (Fiescherhorn, Switzerland) and an Arctic glacier (Lomonosovfonna, Norway). To understand PCB fate and dynamics, we investigate the interaction of deposition, sorption to ice and particles in the atmosphere and within the glacier, revolatilization, diffusion and degradation, and discuss the effects of these processes on the fate of individual PCB congeners. The model is able to reproduce measured absolute concentrations in the two glaciers for most PCB congeners. While the model generally predicts concentration profiles peaking in the 1970s, in the measurements, this behavior can only be seen for higher-chlorinated PCB congeners on Fiescherhorn glacier. We suspect seasonal melt processes are disturbing the concentration profiles of the lower-chlorinated PCB congeners. While a lower-chlorinated PCB congener is mainly deposited by dry deposition and almost completely revolatilized after deposition, a higher-chlorinated PCB congener is predominantly transferred to the glacier surface by wet deposition and then is incorporated into the glacier ice. The incorporated amounts of PCBs are higher on the Alpine glacier than on the Arctic glacier due to the higher precipitation rate and aerosol particle concentration on the former. Future studies should include the effects of seasonal melt processes, calculate the quantities of PCBs incorporated into the entire glacier surface, and estimate the quantity of chemicals released from glaciers to determine the importance of glaciers as a secondary source of organic chemicals to remote aquatic ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.