9 resultados para patient activation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
There is accumulating evidence for the involvement of the unfolded protein response (UPR) in the pathogenesis of many tumor types in humans. This is particularly the case in rapidly growing solid tumors in which the demand for oxygen and nutrients can exceed the supply until new tumor-initiated blood vessels are formed. In contrast, the role of the UPR during leukemogenesis remains largely unknown. Acute myeloid leukemia (AML) is a genetically heterogeneous clonal disorder characterized by the accumulation of somatic mutations in hematopoietic progenitor cells that alter the physiological regulation of self-renewal, survival, proliferation, or differentiation. The CCAAT/enhancer-binding protein alpha (CEBPA) gene is a key myeloid transcription factor and a frequent target for disruption in AML. In particular, translation of CEBPA mRNA can be specifically blocked by binding of the chaperone calreticulin (CALR), a well-established effector of the UPR, to a stem loop structure within the 5' region of the CEBPA mRNA. The relevance of this mechanism was first elucidated in certain AML subtypes carrying the gene rearrangements t(3;21) or inv(16). In our recent work, we could demonstrate the induction of key effectors of the UPR in leukemic cells of AML patients comprising all subtypes (according to the French-American-British (FAB) classification for human AML). The formation of the spliced variant of the X-box binding protein (XBP1s) was detectable in 17.4% (17 of 105) of AML patients. Consistent with an activated UPR, this group had significantly increased expression of the UPR target genes CALR, the 78 kDa glucose-regulated protein (GRP78), and the CCAAT/enhancer-binding protein homologous protein (CHOP). Consistently, in vitro studies confirmed that calreticulin expression was upregulated via activation of the ATF6 pathway in myeloid leukemic cells. As a consequence, CEBPA protein expression was inhibited in vitro as well as in leukemic cells from patients with activated UPR. We therefore propose a model of the UPR being involved in leukemogenesis through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation and cell-cycle deregulation which represent key features of the leukemic phenotype. From a more clinical point of view, the presence of activated UPR in AML patient samples was found to be associated with a favorable disease course.
Resumo:
The in vivo autologous serum skin test (ASST) is the diagnostic gold standard to detect autoantibodies against FcεRI or IgE itself, as well as other autoreactive serum components, in patients with chronic spontaneous urticaria (CU). Coincubation of patient sera with donor basophils and measuring their degranulation in vitro could be a safe alternative but has shown inconsistent results.
Resumo:
OBJECTIVE: Brugada syndrome (BS) is an inherited electrical cardiac disorder characterized by right bundle branch block pattern and ST segment elevation in leads V1 to V3 on surface electrocardiogram that can potentially lead to malignant ventricular tachycardia and sudden cardiac death. About 20% of patients have mutations in the only so far identified gene, SCN5A, which encodes the alpha-subunit of the human cardiac voltage-dependent sodium channel (hNa(v)1.5). Fever has been shown to unmask or trigger the BS phenotype, but the associated molecular and the biophysical mechanisms are still poorly understood. We report on the identification and biophysical characterization of a novel heterozygous missense mutation in SCN5A, F1344S, in a 42-year-old male patient showing the BS phenotype leading to ventricular fibrillation during fever. METHODS: The mutation was reproduced in vitro using site-directed mutagenesis and characterized using the patch clamp technique in the whole-cell configuration. RESULTS: The biophysical characterization of the channels carrying the F1344S mutation revealed a 10 mV mid-point shift of the G/V curve toward more positive voltages during activation. Raising the temperature to 40.5 degrees C further shifted the mid-point activation by 18 mV and significantly changed the slope factor in Na(v)1.5/F1344S mutant channels from -6.49 to -10.27 mV. CONCLUSIONS: Our findings indicate for the first time that the shift in activation and change in the slope factor at a higher temperature mimicking fever could reduce sodium currents' amplitude and trigger the manifestation of the BS phenotype.
Resumo:
PURPOSE: The Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancers and plays an important role in small cell lung cancer (SCLC) biology. We investigated the potential of targeting mTOR signaling as a novel antitumor approach in SCLC. EXPERIMENTAL DESIGN: The expression of mTOR in patient specimens and in a panel of SCLC cell lines was analyzed. The effects on SCLC cell survival and downstream signaling were determined following mTOR inhibition by the rapamycin derivative RAD001 (Everolimus) or down-regulation by small interfering RNA. RESULTS: We found elevated expression of mTOR in patient specimens and SCLC cell lines, compared with normal lung tissue and normal lung epithelial cells. RAD001 treatment impaired basal and growth factor-stimulated cell growth in a panel of SCLC cell lines. Cells with increased Akt pathway activation were more sensitive to RAD001. Accordingly, a constitutive activation of the Akt/mTOR pathway was sufficient to sensitize resistant SCLC cells to the cytotoxic effect of RAD001. In the sensitive cells, RAD001 showed a strong additive effect to the proapoptotic action of the chemotherapeutic agent etoposide. Intriguingly, we observed low Bcl-2 family proteins levels in the SCLC cells with a constitutive Akt pathway activation, whereas an increased expression was detected in the RAD001-resistant SCLC cells. An antisense construct targeting Bcl-2 or a Bcl-2-specific inhibitor was able to sensitize resistant SCLC cells to RAD001. Moreover, SCLC tumor growth in vivo was significantly inhibited by RAD001. CONCLUSION: Together, our data show that inhibiting mTOR signaling with RAD001 potently disrupts growth and survival signaling in human SCLC cells.
Resumo:
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for approximately 75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding alpha1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.
Resumo:
OBJECTIVES Individual mutations in the SCN5A-encoding cardiac sodium channel alpha-subunit cause single cardiac arrhythmia disorders, but a few cause multiple distinct disorders. Here we report a family harboring an SCN5A mutation (L1821fs/10) causing a truncation of the C-terminus with a marked and complex biophysical phenotype and a corresponding variable and complex clinical phenotype with variable penetrance. METHODS AND RESULTS A 12-year-old male with congenital sick sinus syndrome (SSS), cardiac conduction disorder (CCD), and recurrent monomorphic ventricular tachycardia (VT) had mutational analysis that identified a 4 base pair deletion (TCTG) at position 5464-5467 in exon 28 of SCN5A. The mutation was also present in six asymptomatic family members only two of which showed mild ECG phenotypes. The deletion caused a frame-shift mutation (L1821fs/10) with truncation of the C-terminus after 10 missense amino acid substitutions. When expressed in HEK-293 cells for patch-clamp study, the current density of L1821fs/10 was reduced by 90% compared with WT. In addition, gating kinetic analysis showed a 5-mV positive shift in activation, a 12-mV negative shift of inactivation and enhanced intermediate inactivation, all of which would tend to reduce peak and early sodium current. Late sodium current, however, was increased in the mutated channels. CONCLUSIONS The L1821fs/10 mutation causes the most severe disruption of SCN5A structure for a naturally occurring mutation that still produces current. It has a marked loss-of-function and unique phenotype of SSS, CCD and VT with incomplete penetrance.
Resumo:
Despite long-standing calls for patient-focused research on individuals with generalized anxiety spectrum disorder there is little systematized knowledge about the in-session behaviors of these patients. The primary objective of this study was to describe of in-session trajectories of the patients' level of explication (as an indicator of an elaborated exposure of negative emotionality) and the patients' focus on their own resources and how these trajectories are associated with post-treatment outcome. In respect to GAD patients, a high level of explication might be seen as an indicator of successful exposure of avoided negative emotionality during therapy sessions. Observers made minute-by-minute ratings of 1100 minutes of video of 20 patients-therapists dyads. The results indicated that a higher level of explication generally observed at a later stage during the therapy sessions and the patients' focus on competencies at an early stage was highly associated with positive therapy outcome at assessment at post treatment, independent of pretreatment distress, rapid response of well-being and symptom reduction, as well as the therapists' professional experience and therapy lengths. These results will be discussed under the perspective of emotion regulation of patients and therapist's counterregulation. It is assumed that GAD-Patients are especially skilled in masking difficult emotions. Explication level and emotion regulation are important variables for this patient group but there's relation to outcome is different.
Resumo:
BACKGROUND Peripheral arterial disease (PAD) is a progressive vascular disease associated with a high risk of cardiovascular morbidity and death. Antithrombotic prevention is usually applied by prescribing the antiplatelet agent aspirin. However, in patients with PAD aspirin fails to provide protection against myocardial infarction and death, only reducing the risk of ischemic stroke. Platelets may play a role in disease development, but this has not been tested by proper mechanistic studies. In the present study, we performed a systematic evaluation of platelet reactivity in whole blood from patients with PAD using two high-throughput assays, i.e. multi-agonist testing of platelet activation by flow cytometry and multi-parameter testing of thrombus formation on spotted microarrays. METHODS Blood was obtained from 40 patients (38 on aspirin) with PAD in majority class IIa/IIb and from 40 age-matched control subjects. Whole-blood flow cytometry and multiparameter thrombus formation under high-shear flow conditions were determined using recently developed and validated assays. RESULTS Flow cytometry of whole blood samples from aspirin-treated patients demonstrated unchanged high platelet responsiveness towards ADP, slightly elevated responsiveness after glycoprotein VI stimulation, and decreased responsiveness after PAR1 thrombin receptor stimulation, compared to the control subjects. Most parameters of thrombus formation under flow were similarly high for the patient and control groups. However, in vitro aspirin treatment caused a marked reduction in thrombus formation, especially on collagen surfaces. When compared per subject, markers of ADP- and collagen-induced integrin activation (flow cytometry) strongly correlated with parameters of collagen-dependent thrombus formation under flow, indicative of a common, subject-dependent regulation of both processes. CONCLUSION Despite of the use of aspirin, most platelet activation properties were in the normal range in whole-blood from class II PAD patients. These data underline the need for more effective antithrombotic pharmacoprotection in PAD.
Resumo:
The basophil activation test (BAT) has become a pervasive test for allergic response through the development of flow cytometry, discovery of activation markers such as CD63 and unique markers identifying basophil granulocytes. Basophil activation test measures basophil response to allergen cross-linking IgE on between 150 and 2000 basophil granulocytes in <0.1 ml fresh blood. Dichotomous activation is assessed as the fraction of reacting basophils. In addition to clinical history, skin prick test, and specific IgE determination, BAT can be a part of the diagnostic evaluation of patients with food-, insect venom-, and drug allergy and chronic urticaria. It may be helpful in determining the clinically relevant allergen. Basophil sensitivity may be used to monitor patients on allergen immunotherapy, anti-IgE treatment or in the natural resolution of allergy. Basophil activation test may use fewer resources and be more reproducible than challenge testing. As it is less stressful for the patient and avoids severe allergic reactions, BAT ought to precede challenge testing. An important next step is to standardize BAT and make it available in diagnostic laboratories. The nature of basophil activation as an ex vivo challenge makes it a multifaceted and promising tool for the allergist. In this EAACI task force position paper, we provide an overview of the practical and technical details as well as the clinical utility of BAT in diagnosis and management of allergic diseases.