2 resultados para patchiness
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.
Resumo:
Off-site effects of soil erosion are becoming increasingly important, particularly the pollution of surface waters. In order to develop environmentally efficient and cost effective mitigation options it is essential to identify areas that bear both a high erosion risk and high connectivity to surface waters. This paper introduces a simple risk assessment tool that allows the delineation of potential critical source areas (CSA) of sediment input into surface waters concerning the agricultural areas of Switzerland. The basis are the erosion risk map with a 2 m resolution (ERM2) and the drainage network, which is extended by drained roads, farm tracks, and slope depressions. The probability of hydrological and sedimentological connectivity is assessed by combining soil erosion risk and extended drainage network with flow distance calculation. A GIS-environment with multiple-flow accumulation algorithms is used for routing runoff generation and flow pathways. The result is a high resolution connectivity map of the agricultural area of Switzerland (888,050 ha). Fifty-five percent of the computed agricultural area is potentially connected with surface waters, 45% is not connected. Surprisingly, the larger part of 34% (62% of the connected area) is indirectly connected with surface waters through drained roads, and only 21% are directly connected. The reason is the topographic complexity and patchiness of the landscape due to a dense road and drainage network. A total of 24% of the connected area and 13% of the computed agricultural area, respectively, are rated with a high connectivity probability. On these CSA an adapted land use is recommended, supported by vegetated buffer strips preventing sediment load. Even areas that are far away from open water bodies can be indirectly connected and need to be included in planning of mitigation measures. Thus, the connectivity map presented is an important decision-making tool for policy-makers and extension services. The map is published on the web and thus available for application.