22 resultados para passive safety systems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study deals with indoor positioning using GSM radio, which has the distinct advantage of wide coverage over other wireless technologies. In particular, we focus on passive localization systems that are able to achieve high localization accuracy without any prior knowledge of the indoor environment or the tracking device radio settings. In order to overcome these challenges, newly proposed localization algorithms based on the exploitation of the received signal strength (RSS) are proposed. We explore the effects of non-line-of-sight communication links, opening and closing of doors, and human mobility on RSS measurements and localization accuracy. We have implemented the proposed algorithms on top of software defined radio systems and carried out detailed empirical indoor experiments. The performance results show that the proposed solutions are accurate with average localization errors between 2.4 and 3.2 meters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The adequacy of thromboprophylaxis prescriptions in acutely ill hospitalized medical patients needs improvement. OBJECTIVE: To prospectively assess the efficacy of thromboprophylaxis adequacy of various clinical decision support systems (CDSS) with the aim of increasing the use of explicit criteria for thromboprophylaxis prescription in nine Swiss medical services. METHODS: We randomly assigned medical services to a pocket digital assistant program (PDA), pocket cards (PC) and no CDSS (controls). In centers using an electronic chart, an e-alert system (eAlerts) was developed. After 4 months, we compared post-CDSS with baseline thromboprophylaxis adequacy for the various CDSS and control groups. RESULTS: Overall, 1085 patients were included (395 controls, 196 PC, 168 PDA, 326 eAlerts), 651 pre- and 434 post-CDSS implementation: 472 (43.5%) presented a risk of VTE justifying thromboprophylaxis (31.8% pre, 61.1% post) and 556 (51.2%) received thromboprophylaxis (54.2% pre, 46.8% post). The overall adequacy (% patients with adequate prescription) of pre- and post-CDSS implementation was 56.2 and 50.7 for controls (P = 0.29), 67.3 and 45.3 for PC (P = 0.002), 66.0 and 64.9 for PDA (P = 0.99), 50.5 and 56.2 for eAlerts (P = 0.37), respectively, eAlerts limited overprescription (56% pre, 31% post, P = 0.01). CONCLUSION: While pocket cards and handhelds did not improve thromboprophylaxis adequacy, eAlerts had a modest effect, particularly on the reduction of overprescription. This effect only partially contributes to the improvement of patient safety and more work is needed towards institution-tailored tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed ? as expected ? higher maximal errors; however, depending on the application constraints, this might be negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose The accuracy, efficiency, and efficacy of four commonly recommended medication safety assessment methodologies were systematically reviewed. Methods Medical literature databases were systematically searched for any comparative study conducted between January 2000 and October 2009 in which at least two of the four methodologies—incident report review, direct observation, chart review, and trigger tool—were compared with one another. Any study that compared two or more methodologies for quantitative accuracy (adequacy of the assessment of medication errors and adverse drug events) efficiency (effort and cost), and efficacy and that provided numerical data was included in the analysis. Results Twenty-eight studies were included in this review. Of these, 22 compared two of the methodologies, and 6 compared three methods. Direct observation identified the greatest number of reports of drug-related problems (DRPs), while incident report review identified the fewest. However, incident report review generally showed a higher specificity compared to the other methods and most effectively captured severe DRPs. In contrast, the sensitivity of incident report review was lower when compared with trigger tool. While trigger tool was the least labor-intensive of the four methodologies, incident report review appeared to be the least expensive, but only when linked with concomitant automated reporting systems and targeted follow-up. Conclusion All four medication safety assessment techniques—incident report review, chart review, direct observation, and trigger tool—have different strengths and weaknesses. Overlap between different methods in identifying DRPs is minimal. While trigger tool appeared to be the most effective and labor-efficient method, incident report review best identified high-severity DRPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the effectiveness and safety of covered stents for the management of iatrogenic arterial injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Medical errors and adverse events are a serious threat to patients worldwide. In recent years methodologically sound studies have demonstrated that interventions exist, can be implemented and can have sustainable, measurable positive effects on patient safety. Nonetheless, system-wide progress and adoption of safety practices is slow and evidence of improvements on the organisational and systems level is scarce and ambiguous. This paper reports on the Swiss Patient Safety Conference in 2011 and addresses emerging issues for patient safety and future challenges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study was to propose a general numerical analysis methodology to evaluate the magnetic resonance imaging (MRI)-safety of active implants. Numerical models based on the finite element (FE) technique were used to estimate if the normal operation of an active device was altered during MRI imaging. An active implanted pump was chosen to illustrate the method. A set of controlled experiments were proposed and performed to validate the numerical model. The calculated induced voltages in the important electronic components of the device showed dependence with the MRI field strength. For the MRI radiofrequency fields, significant induced voltages of up to 20 V were calculated for a 0.3T field-strength MRI. For the 1.5 and 3.0T MRIs, the calculated voltages were insignificant. On the other hand, induced voltages up to 11 V were calculated in the critical electronic components for the 3.0T MRI due to the gradient fields. Values obtained in this work reflect to the worst case situation which is virtually impossible to achieve in normal scanning situations. Since the calculated voltages may be removed by appropriate protection circuits, no critical problems affecting the normal operation of the pump were identified. This study showed that the proposed methodology helps the identification of the possible incompatibilities between active implants and MR imaging, and can be used to aid the design of critical electronic systems to ensure MRI-safety

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the problem of service development based on GSM handset signaling. The aim is to achieve this goal without the participation of the users, which requires the use of a passive GSM receiver on the uplink. Since no tool for GSM uplink capturing was available, we developed a new method that can synchronize to multiple mobile devices by simply overhearing traffic between them and the network. Our work includes the implementation of modules for signal recovery, message reconstruction and parsing. The method has been validated against a benchmark solution on GSM downlink and independently evaluated on uplink channels. Initial evaluations show up to 99% success rate in message decoding, which is a very promising result. Moreover, we conducted measurements that reveal insights on the impact of signal power on the capturing performance and investigate possible reactive measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. METHODS Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. RESULTS Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. CONCLUSIONS Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To provide a brief introduction into Critical Incident Reporting Systems (CIRS) as used in human medicine, and to report the discussion from a recent panel meeting discussion with 23 equine anaesthetists in preparation for a new CEPEF-4 (Confidential Enquiry into Perioperative Equine Fatalities) study. STUDY DESIGN Moderated group discussions, and review of literature. METHODS The first group discussion focused on the definition of 'preventable critical incidents' and/or 'near misses' in the context of equine anaesthesia. The second group discussion focused on categorizing critical incidents according to an established framework for analysing risk and safety in clinical medicine. RESULTS While critical incidents do occur in equine anaesthesia, no critical incident reporting system including systematic collection and analysis of critical incidents is in place. CONCLUSIONS AND CLINICAL RELEVANCE Critical incident reporting systems could be used to improve safety in equine anaesthesia - in addition to other study types such as mortality studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patient safety is a major concern in health care systems worldwide. Patients with serious conditions, multimorbidity, and with intense and fragmented health care utilization, like end-stage renal disease (ESRD) patients, are at increased risk for suffering adverse events. In this chapter, the fundamental terms and concepts of patient safety are introduced. Essential epidemiological data relating to the frequency of adverse events and medical errors are provided. The chapter reports important safety threats for ESRD patients and describes examples of key innovations which contribute to patient safety. Recommendations and risk reduction strategies to improve care of ESRD patients are presented. © 2015 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.