7 resultados para particle-laden flow
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In an effort to understand the fate of inhaled submicron particles in the small sacs, or alveoli, comprising the gas-exchange region of the lung, we calculated the flow in three-dimensional (3D) rhythmically expanding models of alveolated ducts. Since convection toward the alveolar walls is a precursor to particle deposition, it was the goal of this paper to investigate the streamline maps' dependence upon alveoli location along the acinar tree. On the alveolar midplane, the recirculating flow pattern exhibited closed streamlines with a stagnation saddle point. Off the midplane we found no closed streamlines but nested, funnel-like, spiral, structures (reminiscent of Russian nesting dolls) that were directed towards the expanding walls in inspiration, and away from the contracting walls in expiration. These nested, funnel-like, structures were surrounded by air that flowed into the cavity from the central channel over inspiration and flowed from the cavity to the central channel over expiration. We also found that fluid particle tracks exhibited similar nested funnel-like spiral structures. We conclude that these unique alveolar flow structures may be of importance in enhancing deposition. In addition, due to inertia, the nested, funnel-like, structures change shape and position slightly during a breathing cycle, resulting in flow mixing. Also, each inspiration feeds a fresh supply of particle-laden air from the central channel to the region surrounding the mixing region. Thus, this combination of flow mixer and flow feeder makes each individual alveolus an effective mixing unit, which is likely to play an important role in determining the overall efficiency of convective mixing in the acinus.
Resumo:
ATLAS measurements of the azimuthal anisotropy in lead–lead collisions at √sNN = 2.76 TeV are shown using a dataset of approximately 7μb−1 collected at the LHC in 2010. The measurements are performed for charged particles with transversemomenta 0.5 < pT < 20 GeV and in the pseudorapidity range |η| < 2.5. The anisotropy is characterized by the Fourier coefficients, vn, of the charged-particle azimuthal angle distribution for n = 2–4. The Fourier coefficients are evaluated using multi-particle cumulants calculated with the generating function method. Results on the transverse momentum, pseudorapidity and centrality dependence of the vn coefficients are presented. The elliptic flow, v2, is obtained from the two-, four-, six- and eight-particle cumulants while higher-order coefficients, v3 and v4, are determined with two- and four-particle cumulants. Flow harmonics vn measured with four-particle cumulants are significantly reduced compared to the measurement involving two-particle cumulants. A comparison to vn measurements obtained using different analysis methods and previously reported by the LHC experiments is also shown. Results of measurements of flow fluctuations evaluated with multiparticle cumulants are shown as a function of transverse momentum and the collision centrality. Models of the initial spatial geometry and its fluctuations fail to describe the flow fluctuations measurements.
Levels and determinants of inflammatory biomarkers in a Swiss population-based sample (CoLaus study)
Resumo:
Objective to assess the levels and determinants of interleukin (IL)-1β, IL-6, tumour necrosis factor (TNF)-α and C-reactive protein (CRP) in a healthy Caucasian population. Methods population sample of 2884 men and 3201 women aged 35 to 75. IL-1β, IL-6 and TNF-α were assessed by a multiplexed particle-based flow cytometric assay and CRP by an immunometric assay. Results Spearman rank correlations between duplicate cytokine measurements (N = 80) ranged between 0.89 and 0.96; intra-class correlation coefficients ranged between 0.94 and 0.97, indicating good reproducibility. Among the 6085 participants, 2289 (37.6%), 451 (7.4%) and 43 (0.7%) had IL-1β, IL-6 and TNF-α levels below detection limits, respectively. Median (interquartile range) for participants with detectable values were 1.17 (0.48–3.90) pg/ml for IL-1β; 1.47 (0.71–3.53) pg/ml for IL-6; 2.89 (1.82–4.53) pg/ml for TNF-α and 1.3 (0.6–2.7) ng/ml for CRP. On multivariate analysis, greater age was the only factor inversely associated with IL-1β levels. Male sex, increased BMI and smoking were associated with greater IL-6 levels, while no relationship was found for age and leisure-time PA. Male sex, greater age, increased BMI and current smoking were associated with greater TNF-α levels, while no relationship was found with leisure-time PA. CRP levels were positively related to age, BMI and smoking, and inversely to male sex and physical activity. Conclusion Population-based levels of several cytokines were established. Increased age and BMI, and to a lesser degree sex and smoking, significantly and differentially impact cytokine levels, while leisure-time physical activity has little effect.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
The distributions of event-by-event harmonic flow coefficients v_n for n=2-4 are measured in sqrt(s_NN)=2.76 TeV Pb+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using charged particles with transverse momentum pT> 0.5 GeV and in the pseudorapidity range |eta|<2.5 in a dataset of approximately 7 ub^-1 recorded in 2010. The shapes of the v_n distributions are described by a two-dimensional Gaussian function for the underlying flow vector in central collisions for v_2 and over most of the measured centrality range for v_3 and v_4. Significant deviations from this function are observed for v_2 in mid-central and peripheral collisions, and a small deviation is observed for v_3 in mid-central collisions. It is shown that the commonly used multi-particle cumulants are insensitive to the deviations for v_2. The v_n distributions are also measured independently for charged particles with 0.5
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1
Resumo:
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.