35 resultados para particle physics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f+(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio fK / fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L × SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three instruments I contributed to propose and develop: segmented ionization chambers for hadrontherapy, a proton radiography apparatus with nuclear emulsion films, and a beam monitor detector for ion beams based on doped silica fibres. Selected research and review papers are contained in Part II. For copyright reasons, they are only listed and not reprinted in this on-line version. They are available on the websites of the journals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quarks were introduced 50 years ago opening the road towards our understanding of the elementary constituents of matter and their fundamental interactions. Since then, a spectacular progress has been made with important discoveries that led to the establishment of the Standard Theory that describes accurately the basic constituents of the observable matter, namely quarks and leptons, interacting with the exchange of three fundamental forces, the weak, electromagnetic and strong force. Particle physics is now entering a new era driven by the quest of understanding of the composition of our Universe such as the unobservable (dark) matter, the hierarchy of masses and forces, the unification of all fundamental interactions with gravity in a consistent quantum framework, and several other important questions. A candidate theory providing answers to many of these questions is string theory that replaces the notion of point particles by extended objects, such as closed and open strings. In this short note, I will give a brief overview of string unification, describe in particular how quarks and leptons can emerge and discuss what are possible predictions for particle physics and cosmology that could test these ideas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article gives an overview on the status of experimental searches for dark matter at the end of 2014. The main focus is on direct searches for weakly interacting massive particles (WIMPs) using underground-based low-background detectors, especially on the new results published in 2014. WIMPs are excellent dark matter candidates, predicted by many theories beyond the standard model of particle physics, and are expected to interact with the target nuclei either via spin-independent (scalar) or spin-dependent (axial-vector) couplings. Non-WIMP dark matter candidates, especially axions and axion-like particles are also briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The OPERA experiment was designed to study νμ→ντ oscillations in appearance mode using the CERN to Gran Sasso high energy neutrino beam. From 2008 to 2012, 19505 CNGS neutrino interactions were recorded in the OPERA detector. At the present status of the analysis, 4 ντ candidate events have been observed, establishing the oscillation mechanism in the atmospheric sector with a significance of 4.2 σ. The oscillation analysis will be presented in detail and the candidate events will be described. The final measurement of the atmospheric muon charge ratio in the TeV region will be also reported.