10 resultados para parsing
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In order to analyze software systems, it is necessary to model them. Static software models are commonly imported by parsing source code and related data. Unfortunately, building custom parsers for most programming languages is a non-trivial endeavour. This poses a major bottleneck for analyzing software systems programmed in languages for which importers do not already exist. Luckily, initial software models do not require detailed parsers, so it is possible to start analysis with a coarse-grained importer, which is then gradually refined. In this paper we propose an approach to "agile modeling" that exploits island grammars to extract initial coarse-grained models, parser combinators to enable gradual refinement of model importers, and various heuristics to recognize language structure, keywords and other language artifacts.
Resumo:
The domain of context-free languages has been extensively explored and there exist numerous techniques for parsing (all or a subset of) context-free languages. Unfortunately, some programming languages are not context-free. Using standard context-free parsing techniques to parse a context-sensitive programming language poses a considerable challenge. Im- plementors of programming language parsers have adopted various techniques, such as hand-written parsers, special lex- ers, or post-processing of an ambiguous parser output to deal with that challenge. In this paper we suggest a simple extension of a top-down parser with contextual information. Contrary to the tradi- tional approach that uses only the input stream as an input to a parsing function, we use a parsing context that provides ac- cess to a stream and possibly to other context-sensitive infor- mation. At a same time we keep the context-free formalism so a grammar definition stays simple without mind-blowing context-sensitive rules. We show that our approach can be used for various purposes such as indent-sensitive parsing, a high-precision island parsing or XML (with arbitrary el- ement names) parsing. We demonstrate our solution with PetitParser, a parsing-expression grammar based, top-down, parser combinator framework written in Smalltalk.
Resumo:
Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually, water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a programmer has to create water tailored to each individual island. Such an approach is fragile, however, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by a programmer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing - bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. We integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability.
Resumo:
Grammars for programming languages are traditionally specified statically. They are hard to compose and reuse due to ambiguities that inevitably arise. PetitParser combines ideas from scannerless parsing, parser combinators, parsing expression grammars and packrat parsers to model grammars and parsers as objects that can be reconfigured dynamically. Through examples and benchmarks we demonstrate that dynamic grammars are not only flexible but highly practical.
Resumo:
Brian electric activity is viewed as sequences of momentary maps of potential distribution. Frequency-domain source modeling, estimation of the complexity of the trajectory of the mapped brain field distributions in state space, and microstate parsing were used as analysis tools. Input-presentation as well as task-free (spontaneous thought) data collection paradigms were employed. We found: Alpha EEG field strength is more affected by visualizing mentation than by abstract mentation, both input-driven as well as self-generated. There are different neuronal populations and brain locations of the electric generators for different temporal frequencies of the brain field. Different alpha frequencies execute different brain functions as revealed by canonical correlations with mentation profiles. Different modes of mentation engage the same temporal frequencies at different brain locations. The basic structure of alpha electric fields implies inhomogeneity over time — alpha consists of concatenated global microstates in the sub-second range, characterized by quasi-stable field topographies, and rapid transitions between the microstates. In general, brain activity is strongly discontinuous, indicating that parsing into field landscape-defined microstates is appropriate. Different modes of spontaneous and induced mentation are associated with different brain electric microstates; these are proposed as candidates for psychophysiological ``atoms of thought''.
Resumo:
This paper addresses the problem of service development based on GSM handset signaling. The aim is to achieve this goal without the participation of the users, which requires the use of a passive GSM receiver on the uplink. Since no tool for GSM uplink capturing was available, we developed a new method that can synchronize to multiple mobile devices by simply overhearing traffic between them and the network. Our work includes the implementation of modules for signal recovery, message reconstruction and parsing. The method has been validated against a benchmark solution on GSM downlink and independently evaluated on uplink channels. Initial evaluations show up to 99% success rate in message decoding, which is a very promising result. Moreover, we conducted measurements that reveal insights on the impact of signal power on the capturing performance and investigate possible reactive measures.
Resumo:
Software corpora facilitate reproducibility of analyses, however, static analysis for an entire corpus still requires considerable effort, often duplicated unnecessarily by multiple users. Moreover, most corpora are designed for single languages increasing the effort for cross-language analysis. To address these aspects we propose Pangea, an infrastructure allowing fast development of static analyses on multi-language corpora. Pangea uses language-independent meta-models stored as object model snapshots that can be directly loaded into memory and queried without any parsing overhead. To reduce the effort of performing static analyses, Pangea provides out-of-the box support for: creating and refining analyses in a dedicated environment, deploying an analysis on an entire corpus, using a runner that supports parallel execution, and exporting results in various formats. In this tool demonstration we introduce Pangea and provide several usage scenarios that illustrate how it reduces the cost of analysis.
Resumo:
Code clone detection helps connect developers across projects, if we do it on a large scale. The cornerstones that allow clone detection to work on a large scale are: (1) bad hashing (2) lightweight parsing using regular expressions and (3) MapReduce pipelines. Bad hashing means to determine whether or not two artifacts are similar by checking whether their hashes are identical. We show a bad hashing scheme that works well on source code. Lightweight parsing using regular expressions is our technique of obtaining entire parse trees from regular expressions, robustly and efficiently. We detail the algorithm and implementation of one such regular expression engine. MapReduce pipelines are a way of expressing a computation such that it can automatically and simply be parallelized. We detail the design and implementation of one such MapReduce pipeline that is efficient and debuggable. We show a clone detector that combines these cornerstones to detect code clones across all projects, across all versions of each project.
Resumo:
Abstract Imprecise manipulation of source code (semi-parsing) is useful for tasks such as robust parsing, error recovery, lexical analysis, and rapid development of parsers for data extraction. An island grammar precisely defines only a subset of a language syntax (islands), while the rest of the syntax (water) is defined imprecisely. Usually water is defined as the negation of islands. Albeit simple, such a definition of water is naive and impedes composition of islands. When developing an island grammar, sooner or later a language engineer has to create water tailored to each individual island. Such an approach is fragile, because water can change with any change of a grammar. It is time-consuming, because water is defined manually by an engineer and not automatically. Finally, an island surrounded by water cannot be reused because water has to be defined for every grammar individually. In this paper we propose a new technique of island parsing —- bounded seas. Bounded seas are composable, robust, reusable and easy to use because island-specific water is created automatically. Our work focuses on applications of island parsing to data extraction from source code. We have integrated bounded seas into a parser combinator framework as a demonstration of their composability and reusability.