58 resultados para parcel-scale spatial analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper examines how the geospatial accuracy of samples and sample size influence conclusions from geospatial analyses. It does so using the example of a study investigating the global phenomenon of large-scale land acquisitions and the socio-ecological characteristics of the areas they target. First, we analysed land deal datasets of varying geospatial accuracy and varying sizes and compared the results in terms of land cover, population density, and two indicators for agricultural potential: yield gap and availability of uncultivated land that is suitable for rainfed agriculture. We found that an increase in geospatial accuracy led to a substantial and greater change in conclusions about the land cover types targeted than an increase in sample size, suggesting that using a sample of higher geospatial accuracy does more to improve results than using a larger sample. The same finding emerged for population density, yield gap, and the availability of uncultivated land suitable for rainfed agriculture. Furthermore, the statistical median proved to be more consistent than the mean when comparing the descriptive statistics for datasets of different geospatial accuracy. Second, we analysed effects of geospatial accuracy on estimations regarding the potential for advancing agricultural development in target contexts. Our results show that the target contexts of the majority of land deals in our sample whose geolocation is known with a high level of accuracy contain smaller amounts of suitable, but uncultivated land than regional- and national-scale averages suggest. Consequently, the more target contexts vary within a country, the more detailed the spatial scale of analysis has to be in order to draw meaningful conclusions about the phenomena under investigation. We therefore advise against using national-scale statistics to approximate or characterize phenomena that have a local-scale impact, particularly if key indicators vary widely within a country.
Resumo:
Alpine snowbeds are characterised by a very short growing season. However, the length of the snow-free period is increasingly prolonged due to climate change, so that snowbeds become susceptible to invasions from neighbouring alpine meadow communities. We hypothesised that spatial distribution of species generated by plant interactions may indicate whether snowbed species will coexist with or will be out-competed by invading alpine species – spatial aggregation or segregation will point to coexistence or competitive exclusion, respectively. We tested this hypothesis in snowbeds of the Swiss Alps using the variance ratio statistics. We focused on the relationships between dominant snowbed species, subordinate snowbed species, and potentially invading alpine grassland species. Subordinate snowbed species were generally spatially aggregated with each other, but were segregated from alpine grassland species. Competition between alpine grassland and subordinate snowbed species may have caused this segregation. Segregation between these species groups increased with earlier snowmelt, suggesting an increasing importance of competition with climate change. Further, a dominant snowbed species (Alchemilla pentaphyllea) was spatially aggregated with subordinate snowbed species, while two other dominants (Gnaphalium supinum and Salix herbacea) showed aggregated patterns with alpine grassland species. These dominant species are known to show distinct microhabitat preferences suggesting the existence of hidden microhabitats with different susceptibility to invaders. These results allow us to suggest that alpine snowbed areas are likely to be reduced as a consequence of climate change and that invading species from nearby alpine grasslands could outcompete subordinate snowbed species. On the other hand, microhabitats dominated by Gnaphalium or Salix seem to be particularly prone to invasions by non-snowbed species.
Resumo:
Characterization of spatial and temporal variation in grassland productivity and nutrition is crucial for a comprehensive understanding of ecosystem function. Although within-site heterogeneity in soil and plant properties has been shown to be relevant for plant community stability, spatiotemporal variability in these factors is still understudied in temperate grasslands. Our study aimed to detect if soil characteristics and plant diversity could explain observed small-scale spatial and temporal variability in grassland productivity, biomass nutrient concentrations, and nutrient limitation. Therefore, we sampled 360 plots of 20 cm × 20 cm each at six consecutive dates in an unfertilized grassland in Southern Germany. Nutrient limitation was estimated using nutrient ratios in plant biomass. Absolute values of, and spatial variability in, productivity, biomass nutrient concentrations, and nutrient limitation were strongly associated with sampling date. In April, spatial heterogeneity was high and most plots showed phosphorous deficiency, while later in the season nitrogen was the major limiting nutrient. Additionally, a small significant positive association between plant diversity and biomass phosphorus concentrations was observed, but should be tested in more detail. We discuss how low biological activity e.g., of soil microbial organisms might have influenced observed heterogeneity of plant nutrition in early spring in combination with reduced active acquisition of soil resources by plants. These early-season conditions are particularly relevant for future studies as they differ substantially from more thoroughly studied later season conditions. Our study underlines the importance of considering small spatial scales and temporal variability to better elucidate mechanisms of ecosystem functioning and plant community assembly.
Resumo:
This paper analyses local geographical contexts targeted by transnational large-scale land acquisitions (>200 ha per deal) in order to understand how emerging patterns of socio-ecological characteristics can be related to processes of large-scale foreign investment in land. Using a sample of 139 land deals georeferenced with high spatial accuracy, we first analyse their target contexts in terms of land cover, population density, accessibility, and indicators for agricultural potential. Three distinct patterns emerge from the analysis: densely populated and easily accessible croplands (35% of land deals); remote forestlands with lower population densities (34% of land deals); and moderately populated and moderately accessible shrub- or grasslands (26% of land deals). These patterns are consistent with processes described in the relevant case study literature, and they each involve distinct types of stakeholders and associated competition over land. We then repeat the often-cited analysis that postulates a link between land investments and target countries with abundant so-called “idle” or “marginal” lands as measured by yield gap and available suitable but uncultivated land; our methods differ from the earlier approach, however, in that we examine local context (10-km radius) rather than countries as a whole. The results show that earlier findings are disputable in terms of concepts, methods, and contents. Further, we reflect on methodologies for exploring linkages between socioecological patterns and land investment processes. Improving and enhancing large datasets of georeferenced land deals is an important next step; at the same time, careful choice of the spatial scale of analysis is crucial for ensuring compatibility between the spatial accuracy of land deal locations and the resolution of available geospatial data layers. Finally, we argue that new approaches and methods must be developed to empirically link socio-ecological patterns in target contexts to key determinants of land investment processes. This would help to improve the validity and the reach of our findings as an input for evidence-informed policy debates.
Resumo:
This chapter aims to overcome the gap existing between case study research, which typically provides qualitative and process-based insights, and national or global inventories that typically offer spatially explicit and quantitative analysis of broader patterns, and thus to present adequate evidence for policymaking regarding large-scale land acquisitions. Therefore, the chapter links spatial patterns of land acquisitions to underlying implementation processes of land allocation. Methodologically linking the described patterns and processes proved difficult, but we have identified indicators that could be added to inventories and monitoring systems to make linkage possible. Combining complementary approaches in this way may help to determine where policy space exists for more sustainable governance of land acquisitions, both geographically and with regard to processes of agrarian transitions. Our spatial analysis revealed two general patterns: (i) relatively large forestry-related acquisitions that target forested landscapes and often interfere with semi-subsistence farming systems; and (ii) smaller agriculture-related acquisitions that often target existing cropland and also interfere with semi-subsistence systems. Furthermore, our meta-analysis of land acquisition implementation processes shows that authoritarian, top-down processes dominate. Initially, the demands of powerful regional and domestic investors tend to override socio-ecological variables, local actors’ interests, and land governance mechanisms. As available land grows scarce, however, and local actors gain experience dealing with land acquisitions, it appears that land investments begin to fail or give way to more inclusive, bottom-up investment models.
Resumo:
Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Vietnam has developed rapidly over the past 15 years. However, progress was not uniformly distributed across the country. Availability, adequate visualization and analysis of spatially explicit data on socio-economic and environmental aspects can support both research and policy towards sustainable development. Applying appropriate mapping techniques allows gleaning important information from tabular socio-economic data. Spatial analysis of socio-economic phenomena can yield insights into locally-specifi c patterns and processes that cannot be generated by non-spatial applications. This paper presents techniques and applications that develop and analyze spatially highly disaggregated socioeconomic datasets. A number of examples show how such information can support informed decisionmaking and research in Vietnam.
Resumo:
The mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of this relatively large amount of information, we have compared a compilation of 50 air and sea surface temperature reconstructions with the results of three simulations performed with general circulation models and one carried out with LOVECLIM, a model of intermediate complexity. The conclusions derived from this analysis confirm that models and data agree on the large-scale spatial pattern but the models underestimate the magnitude of some observed changes and that large discrepancies are observed at the local scale. To further investigate the origin of those inconsistencies, we have constrained LOVECLIM to follow the signal recorded by the proxies selected in the compilation using a data-assimilation method based on a particle filter. In one simulation, all the 50 proxy-based records are used while in the other two only the continental or oceanic proxy-based records constrain the model results. As expected, data assimilation leads to improving the consistency between model results and the reconstructions. In particular, this is achieved in a robust way in all the experiments through a strengthening of the westerlies at midlatitude that warms up northern Europe. Furthermore, the comparison of the LOVECLIM simulations with and without data assimilation has also objectively identified 16 proxy-based paleoclimate records whose reconstructed signal is either incompatible with the signal recorded by some other proxy-based records or with model physics.
Resumo:
OBJECTIVES To determine the relationship between nasolabial symmetry and esthetics in subjects with orofacial clefts. MATERIAL AND METHODS Eighty-four subjects (mean age 10 years, standard deviation 1.5) with various types of nonsyndromic clefts were included: 11 had unilateral cleft lip (UCL); 30 had unilateral cleft lip and alveolus (UCLA); and 43 had unilateral cleft lip, alveolus, and palate (UCLAP). A 3D stereophotogrammetric image of the face was taken for each subject. Symmetry and esthetics were evaluated on cropped 3D facial images. The degree of asymmetry of the nasolabial area was calculated based on all 3D data points using a surface registration algorithm. Esthetic ratings of various elements of nasal morphology were performed by eight lay raters on a 100 mm visual analog scale. Statistical analysis included ANOVA tests and regression models. RESULTS Nasolabial asymmetry increased with growing severity of the cleft (p = 0.029). Overall, nasolabial appearance was affected by nasolabial asymmetry; subjects with more nasolabial asymmetry were judged as having a less esthetically pleasing nasolabial area (p < 0.001). However, the relationship between nasolabial symmetry and esthetics was relatively weak in subjects with UCLAP, in whom only vermilion border esthetics was associated with asymmetry. CONCLUSIONS Nasolabial symmetry assessed with 3D facial imaging can be used as an objective measure of treatment outcome in subjects with less severe cleft deformity. In subjects with more severe cleft types, other factors may play a decisive role. CLINICAL SIGNIFICANCE Assessment of nasolabial symmetry is a useful measure of treatment success in less severe cleft types.
Resumo:
Detecting small amounts of genetic subdivision across geographic space remains a persistent challenge. Often a failure to detect genetic structure is mistaken for evidence of panmixia, when more powerful statistical tests may uncover evidence for subtle geographic differentiation. Such slight subdivision can be demographically and evolutionarily important as well as being critical for management decisions. We introduce here a method, called spatial analysis of shared alleles (SAShA), that detects geographically restricted alleles by comparing the spatial arrangement of allelic co-occurrences with the expectation under panmixia. The approach is allele-based and spatially explicit, eliminating the loss of statistical power that can occur with user-defined populations and statistical averaging within populations. Using simulated data sets generated under a stepping-stone model of gene flow, we show that this method outperforms spatial autocorrelation (SA) and UST under common real-world conditions: at relatively high migration rates when diversity is moderate or high, especially when sampling is poor. We then use this method to show clear differences in the genetic patterns of 2 nearshore Pacific mollusks, Tegula funebralis (5 Chlorostoma funebralis) and Katharina tunicata, whose overall patterns of within-species differentiation are similar according to traditional population genetics analyses. SAShA meaningfully complements UST/FST, SA, and other existing geographic genetic analyses and is especially appropriate for evaluating species with high gene flow and subtle genetic differentiation.