14 resultados para parameter estimation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND Partner notification is essential to the comprehensive case management of sexually transmitted infections. Systematic reviews and mathematical modelling can be used to synthesise information about the effects of new interventions to enhance the outcomes of partner notification. OBJECTIVE To study the effectiveness and cost-effectiveness of traditional and new partner notification technologies for curable sexually transmitted infections (STIs). DESIGN Secondary data analysis of clinical audit data; systematic reviews of randomised controlled trials (MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials) published from 1 January 1966 to 31 August 2012 and of studies of health-related quality of life (HRQL) [MEDLINE, EMBASE, ISI Web of Knowledge, NHS Economic Evaluation Database (NHS EED), Database of Abstracts of Reviews of Effects (DARE) and Health Technology Assessment (HTA)] published from 1 January 1980 to 31 December 2011; static models of clinical effectiveness and cost-effectiveness; and dynamic modelling studies to improve parameter estimation and examine effectiveness. SETTING General population and genitourinary medicine clinic attenders. PARTICIPANTS Heterosexual women and men. INTERVENTIONS Traditional partner notification by patient or provider referral, and new partner notification by expedited partner therapy (EPT) or its UK equivalent, accelerated partner therapy (APT). MAIN OUTCOME MEASURES Population prevalence; index case reinfection; and partners treated per index case. RESULTS Enhanced partner therapy reduced reinfection in index cases with curable STIs more than simple patient referral [risk ratio (RR) 0.71; 95% confidence interval (CI) 0.56 to 0.89]. There are no randomised trials of APT. The median number of partners treated for chlamydia per index case in UK clinics was 0.60. The number of partners needed to treat to interrupt transmission of chlamydia was lower for casual than for regular partners. In dynamic model simulations, > 10% of partners are chlamydia positive with look-back periods of up to 18 months. In the presence of a chlamydia screening programme that reduces population prevalence, treatment of current partners achieves most of the additional reduction in prevalence attributable to partner notification. Dynamic model simulations show that cotesting and treatment for chlamydia and gonorrhoea reduce the prevalence of both STIs. APT has a limited additional effect on prevalence but reduces the rate of index case reinfection. Published quality-adjusted life-year (QALY) weights were of insufficient quality to be used in a cost-effectiveness study of partner notification in this project. Using an intermediate outcome of cost per infection diagnosed, doubling the efficacy of partner notification from 0.4 to 0.8 partners treated per index case was more cost-effective than increasing chlamydia screening coverage. CONCLUSIONS There is evidence to support the improved clinical effectiveness of EPT in reducing index case reinfection. In a general heterosexual population, partner notification identifies new infected cases but the impact on chlamydia prevalence is limited. Partner notification to notify casual partners might have a greater impact than for regular partners in genitourinary clinic populations. Recommendations for future research are (1) to conduct randomised controlled trials using biological outcomes of the effectiveness of APT and of methods to increase testing for human immunodeficiency virus (HIV) and STIs after APT; (2) collection of HRQL data should be a priority to determine QALYs associated with the sequelae of curable STIs; and (3) standardised parameter sets for curable STIs should be developed for mathematical models of STI transmission that are used for policy-making. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Resumo:
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.
Resumo:
In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.
Resumo:
In situ diffusion experiments are performed in geological formations at underground research laboratories to overcome the limitations of laboratory diffusion experiments and investigate scale effects. Tracer concentrations are monitored at the injection interval during the experiment (dilution data) and measured from host rock samples around the injection interval at the end of the experiment (overcoring data). Diffusion and sorption parameters are derived from the inverse numerical modeling of the measured tracer data. The identifiability and the uncertainties of tritium and Na-22(+) diffusion and sorption parameters are studied here by synthetic experiments having the same characteristics as the in situ diffusion and retention (DR) experiment performed on Opalinus Clay. Contrary to previous identifiability analyses of in situ diffusion experiments, which used either dilution or overcoring data at approximate locations, our analysis of the parameter identifiability relies simultaneously on dilution and overcoring data, accounts for the actual position of the overcoring samples in the claystone, uses realistic values of the standard deviation of the measurement errors, relies on model identification criteria to select the most appropriate hypothesis about the existence of a borehole disturbed zone and addresses the effect of errors in the location of the sampling profiles. The simultaneous use of dilution and overcoring data provides accurate parameter estimates in the presence of measurement errors, allows the identification of the right hypothesis about the borehole disturbed zone and diminishes other model uncertainties such as those caused by errors in the volume of the circulation system and the effective diffusion coefficient of the filter. The proper interpretation of the experiment requires the right hypothesis about the borehole disturbed zone. A wrong assumption leads to large estimation errors. The use of model identification criteria helps in the selection of the best model. Small errors in the depth of the overcoring samples lead to large parameter estimation errors. Therefore, attention should be paid to minimize the errors in positioning the depth of the samples. The results of the identifiability analysis do not depend on the particular realization of random numbers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) showed that the geocenter z -component estimated from observations of global navigation satellite systems (GNSS) is strongly correlated to a particular parameter of the solar radiation pressure (SRP) model developed by Beutler et al. (Manuscr Geod 19:367–386, 1994). They analyzed the forces caused by SRP and the impact on the satellites’ orbits. The authors achieved their results using perturbation theory and celestial mechanics. Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) also deal with the geocenter determination with GNSS. The authors carried out a collinearity diagnosis of the associated parameter estimation problem. They conclude “without much exaggerating that current GNSS are insensitive to any component of geocenter motion”. They explain this inability by the high degree of collinearity of the geocenter coordinates mainly with satellite clock corrections. Based on these results and additional experiments, they state that the conclusions drawn by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) are questionable. We do not agree with these conclusions and present our arguments in this article. In the first part, we review and highlight the main characteristics of the studies performed by Meindl et al. (Adv Space Res 51(7):1047–1064, 2013) to show that the experiments are quite different from those performed by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026,2013) . In the second part, we show that normal equation (NEQ) systems are regular when estimating geocenter coordinates, implying that the covariance matrices associated with the NEQ systems may be used to assess the sensitivity to geocenter coordinates in a standard way. The sensitivity of GNSS to the components of the geocenter is discussed. Finally, we comment on the arguments raised by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026, 2013) against the results of Meindl et al. (Adv Space Res 51(7):1047–1064, 2013).
Resumo:
This paper examines the accuracy of software-based on-line energy estimation techniques. It evaluates today’s most widespread energy estimation model in order to investigate whether the current methodology of pure software-based energy estimation running on a sensor node itself can indeed reliably and accurately determine its energy consumption - independent of the particular node instance, the traffic load the node is exposed to, or the MAC protocol the node is running. The paper enhances today’s widely used energy estimation model by integrating radio transceiver switches into the model, and proposes a methodology to find the optimal estimation model parameters. It proves by statistical validation with experimental data that the proposed model enhancement and parameter calibration methodology significantly increases the estimation accuracy.
Resumo:
A longitudinal bone survey was conducted in 86 female Wistar rats in order to assess mineral density kinetics from young age (5 weeks: 115 g) till late adulthood (64 weeks: 586 g). In vivo quantitative radiographic scanning was performed on the caudal vertebrae, taking trabecular mass as the parameter. Measurements were expressed as Relative Optical Density (ROD) units by means of a high resolution densitometric device. Results showed a progressive increase in mineral density throughout the life cycle, with a tendency to level in the higher weight range, indicating that progressive mineral aposition occurs in rats in dependency of age. This phenomenon, however, should be always considered within the context of continuous skeletal growth and related changes typical of this species. Twelve different animals were also examined following induction of articular inflammation with Freund's adjuvant in six of them. Bone survey conducted 12 to 18 days after inoculation revealed a significant (P less than 0.01) reduction in trabecular bone mass of scanned vertebrae in comparison with the weight-matched untreated controls. It is concluded that the in vivo quantitative assessment of bone density illustrated in this report represents a sensitive and useful tool for the long-term survey of naturally occurring or experimentally induced bone changes. Scanning of the same part of the skeleton can be repeated, thereby avoiding sacrifice of the animal and time-consuming preparation of post-mortem material.
Resumo:
Fossil pollen data from stratigraphic cores are irregularly spaced in time due to non-linear age-depth relations. Moreover, their marginal distributions may vary over time. We address these features in a nonparametric regression model with errors that are monotone transformations of a latent continuous-time Gaussian process Z(T). Although Z(T) is unobserved, due to monotonicity, under suitable regularity conditions, it can be recovered facilitating further computations such as estimation of the long-memory parameter and the Hermite coefficients. The estimation of Z(T) itself involves estimation of the marginal distribution function of the regression errors. These issues are considered in proposing a plug-in algorithm for optimal bandwidth selection and construction of confidence bands for the trend function. Some high-resolution time series of pollen records from Lago di Origlio in Switzerland, which go back ca. 20,000 years are used to illustrate the methods.
Resumo:
The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior. Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past years, C. elegans' motility has been studied across a wide range of environments, including crawling on substrates, swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both the background environment and the nematode appearance are explicitly learned and used to accurately segment a target nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive platform for C. elegans' segmentation and ‘skeletonizing’ across a wide range of motility assays.