18 resultados para pancuronium bromide
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To quantify the dose of pancuronium required to obtain moderate neuromuscular blockade as monitored by acceleromyography (NMB(mod) : train-of-four count of ≤2) as a part of a balanced anaesthetic protocol in pigs used in cardiovascular research.
Resumo:
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.
Resumo:
A new approach for the determination of free and total valproic acid in small samples of 140 μL human plasma based on capillary electrophoresis with contactless conductivity detection is proposed. A dispersive liquid-liquid microextraction technique was employed in order to remove biological matrices prior to instrumental analysis. The free valproic acid was determined by isolating free valproic acid from protein-bound valproic acid by ultrafiltration under centrifugation of 100 μL sample. The filtrate was acidified to turn valproic acid into its protonated neutral form and then extracted. The determination of total valproic acid was carried out by acidifying 40 μL untreated plasma to release the protein-bound valproic acid prior to extraction. A solution consisting of 10 mM histidine, 10 mM 3-(N-morpholino)propanesulfonic acid and 10 μM hexadecyltrimethylammonium bromide of pH 6.5 was used as background electrolyte for the electrophoretic separation. The method showed good linearity in the range of 0.4-300 μg/mL with a correlation coefficient of 0.9996. The limit of detection was 0.08 μg/mL, and the reproducibility of the peak area was excellent (RSD=0.7-3.5%, n=3, for the concentration range from 1 to 150 μg/mL). The results for the free and total valproic acid concentration in human plasma were found to be comparable to those obtained with a standard immunoassay. The corresponding correlation coefficients were 0.9847 for free and 0.9521 for total valproic acid.
Resumo:
The thiazolides represent a novel class of anti-infective drugs, with the nitrothiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] (NTZ) as the parent compound. NTZ exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. In vivo, NTZ is rapidly deacetylated to tizoxanide (TIZ), which exhibits similar activities. We have here comparatively investigated the in vitro effects of NTZ, TIZ, a number of other modified thiazolides, and metronidazole (MTZ) on Giardia lamblia trophozoites grown under axenic culture conditions and in coculture with the human cancer colon cell line Caco2. The modifications of the thiazolides included, on one hand, the replacement of the nitro group on the thiazole ring with a bromide, and, on the other hand, the differential positioning of methyl groups on the benzene ring. Of seven compounds with a bromo instead of a nitro group, only one, RM4820, showed moderate inhibition of Giardia proliferation in axenic culture, but not in coculture with Caco2 cells, with a 50% inhibitory concentration (IC50) of 18.8 microM; in comparison, NTZ and tizoxanide had IC50s of 2.4 microM, and MTZ had an IC50 of 7.8 microM. Moreover, the methylation or carboxylation of the benzene ring at position 3 resulted in a significant decrease of activity, and methylation at position 5 completely abrogated the antiparasitic effect of the nitrothiazole compound. Trophozoites treated with NTZ showed distinct lesions on the ventral disk as soon as 2 to 3 h after treatment, whereas treatment with metronidazole resulted in severe damage to the dorsal surface membrane at later time points.
Resumo:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.
Resumo:
OBJECTIVE: Outcome in osteochondral allografting is limited by the immunological incompatibility of the grafted tissue. Based on a resistance of chondrocytes to photodynamic therapy in cell culture it is proposed that 5-aminolevulinic acid-based photodynamic therapy (5-ALA-PDT) might be used to inactivate bone while maintaining viability of chondrocytes and thus immunomodulate bone selectively. METHODS: Chondrocytes and osteoblasts from porcine humeral heads were either isolated (cell culture) or treated in situ (tissue culture). To quantify cytotoxic effects of 5-ALA-PDT (0-20J/cm(2), 100mW/cm(2)) an (3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide) (MTT)-assay was used in cell culture and in situ hybridization in tissue culture to assess metabolic active cells (functional osteoblasts: colalpha(1)(I) mRNA, functional chondrocytes: colalpha(1)(II) mRNA). RESULTS: In cell culture, survival after 5-ALA-PDT was significantly higher for chondrocytes (5J/cm(2): 87+/-12% compared to untreated cells) than for osteoblasts (5J/cm(2): 12+/-11%). In tissue culture, the percentage of functional chondrocytes in cartilage showed a decrease after 5-ALA-PDT (direct fixation: 92+/-2%, 20J/cm(2): 35+/-15%; P<0.0001). A significant decrease in the percentage of bone surfaces covered by functional osteoblasts was observed in freshly harvested (31+/-3%) compared to untreated tissues maintained in culture (11+/-4%, P<0.0001), with no further decrease after 5-ALA-PDT. CONCLUSION: Chondrocytes were more resistant to 5-ALA-PDT than osteoblasts in cell culture, while in tissue culture a loss of functional chondrocytes was observed after 5-ALA-PDT. Since osteoblasts - but not chondrocytes - were sensitive to the tissue culture conditions, devitalized bone with functional cartilage might already be achieved by applying specific tissue culture conditions even without 5-ALA-PDT.
Resumo:
The use of capillary zone electrophoresis (CZE) with indirect absorbance detection for the analysis of ethyl sulfate (EtS) in serum and urine was investigated. EtS is a direct metabolite of ethanol employed as marker for recent alcohol consumption. Fused-silica capillaries of 60 cm total length were either coated with cetyltrimethylammonium bromide (CTAB, 50 microm I.D. capillary) or poly(diallyldimethylammonium chloride) (PDADMAC, 100 microm I.D. capillary) to allow CZE analyses to be performed with reversed polarity. At pH 2.2 with a maleic acid/phthalic acid background electrolyte, both approaches provided reliable EtS serum levels down to 0.2 mg L(-1) (1.6 microM) for the analysis of solid-phase extracts that were prepared after chloride precipitation. Analysis of urines diluted to a conductivity of 5 S m(-1) and analyzed in the two capillary formats resulted in limits of quantification (LOQs) of 2 and 1 mg L(-1), respectively. With urines adjusted to 10 S m(-1) via dilution or condensation, an LOQ of 0.6 mg L(-1) (4.8 microM) was obtained in the CTAB coated capillary whereas in the PDADMAC-coated capillary of equal length not all matrix components were resolved from EtS. The developed assays are robust and suitable to monitor EtS in samples of individuals who consumed as little as one standard drink of an alcoholic beverage containing about 14 g of ethanol.
Resumo:
The diagnosis of an acute asthmatic attack in a child is made on a clinical basis. The severity of the exacerbation can be assessed by physical examination and measurement of the transcutaneous oxygenation saturation. A blood gas analysis can be helpful in this assessment. A child with a severe asthma exacerbation should be promptly referred to an emergency department of a hospital. Oxygen should be given to keep the oxygen saturation above 92% and short-acting, selective beta-2 agonists should be administered. Beta-2 agonists can be delivered by intermittent nebulization, continuous nebulization or by metered dose inhaler (MDI) with a spacer They can also be given intravenously in patients who are unresponsive to escalating therapy. The early administration of systemic corticosteroids is essential for the management of acute asthma in children. When tolerated, systemic corticoseroids can be given orally but inhaled corticosteroids are not recommended. Oxygen delivery, beta-2 agonists and steroid therapy are the mainstay of emergency treatment. Hypovolemia should be corrected either intravenously or orally. Administration of multiple doses of ipratropium bromide has been shown to decrease the hospitalization rate in children and adolescents with severe asthma. Clinical response to initial treatment is the main criterion for hospital admission. Patients with failure to respond to treatment should be transferred to an intensive care unit. A critical aspect of management of the acute asthma attack in a child is the prevention of similar attacks in the future.
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
A model is developed to describe transport and loss of methyl bromide (MeBr) in soil following application as a soil fumigant. The model is used to investigate the effect of soil and management factors on MeBr volatilization. Factors studied include depth of injection, soil water content, presence or absence of tarp, depth to downward barrier, and irrigation after injection. Of these factors, the most important was irrigation after injection followed by covering with the tarp, which increased the diffusive resistance of the soil and prevented early loss of MeBr. The model offers an explanation for the apparently contradictory observations of earlier field studies of MeBr volatilization from soils under different conditions. The model was also used to calculate the concentration-time index for various management alternatives, showing that the irrigation application did not make the surface soil more difficult to fumigate, except at very early times. Therefore, irrigation shows promise for reducing fumigant loss while at the same time permitting control of target organisms during fumigation.
Resumo:
Matrix pore water in the connected inter- and intragranular pore space of low-permeable crystalline bedrock interacts with flowing fracture groundwater predominately by diffusion. Based on the slow exchange between the two water reservoirs, matrix pore water acts as an archive of past changes in fracture groundwater compositions and thus of the palaeohydrological history of a site. Matrix pore water of crystalline bedrock from the Olkiluoto investigation site (SW Finland) was characterised using the stable water isotopes (δ18O, δ2H), combined with the concentrations of dissolved chloride and bromide as natural tracers. The comparison of tracer concentrations in pore water and present-day fracture groundwater suggest for the pore water the presence of old, dilute meteoric water components that infiltrated into the fractures during various warm climate stages. These different meteoric components can be discerned based on the diffusion distance between the two reservoirs and be brought into context with the palaeohydrological evolution of the site.
Resumo:
Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catpC221) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.