19 resultados para pacemaker, defibrillatore, cuore, evoluzione, dispositivi

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

After trans-catheter aortic valve implantation (TAVI), the need for postinterventional pacemaker (PM) implantation can occur in as many as 10-50% of cases, but it is not yet clear, how this need can be predicted. The aim of this study was to assess the possible predictive factors of post TAVI PM implantation based on Computed Tomography (CT) measured aortic valve calcification and its distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to assess the impact of permanent pacemaker (PPM) implantation on clinical outcomes among patients undergoing transfemoral transcatheter aortic valve implantation (TAVI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Falls and fractures in the elderly are among the leading causes of disability. We investigated whether pacemaker implantation prevents falls in patients with SND in a large cohort of patients. Methods. Patient demographics and medical history were collected prospectively. Fall history was retrospectively reconstituted from available medical records. The 10-year probability for major osteoporotic fractures was calculated retrospectively from available medical records using the Swiss fracture risk assessment tool FRAX-Switzerland. Results. During a mean observation period of 2.3 years after implantation, the rates of fallers and injured fallers with fracture were reduced to 15% and 6%, respectively. This corresponds to a relative reduction in the number of fallers of 75% (P < 0.001) and of injured fallers of 63% (P = 0.014) after pacemaker implantation. Similarly, the number of falls was reduced from 60 (48%) before pacemaker implantation to 22 (18%) thereafter (relative reduction 63%, P = 0.035) and the number of falls with injury from 22 (18%) to 7 (6%), which corresponds to a relative reduction of 67%, P = 0.013. Conclusion. In patients with SND, pacemaker implantation significantly reduces the number of patients experiencing falls, the total number of falls, and the risk for osteoporotic fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether a change of left ventricular ejection fraction (LVEF) depending on percentage of right ventricular pacing is found in a real-life setting of a pacemaker clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Today’s medical devices are powered by batteries with a limited energy storage capacity. Depleted batteries have to be replaced, exposing the patients to the risk of adverse events. Thus, a method for harvesting energy inside the body is desirable since it would allow building devices without batteries. Methods: A miniaturized intravascular Tesla turbine was implanted as an arteriovenous shunt between the common carotid artery and external jugular vein of a pig. The harvested energy was used to power a custom-built temporary cardiac pacemaker. Results: At a flow rate of ~150 ml/min, an output power of 0.4 mW was measured. Successful ventricular pacing was performed. Conclusion: Harvesting energy from the circulation using an intravascular turbine is technically feasible and provides enough energy to power a cardiac pacemaker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Atrioventricular (AV) conduction disturbances requiring permanent pacemaker (PPM) implantation may complicate transcatheter aortic valve replacement (TAVR). Available evidence on predictors of PPM is sparse and derived from small studies. Objectives The objective of this study was to provide summary effect estimates for clinically useful predictors of PPM implantation after TAVR. Methods We performed a systematic search for studies that reported the incidence of PPM implantation after TAVR and that provided raw data for the predictors of interest. Data on study, patient, and procedural characteristics were abstracted. Crude risk ratios (RRs) and 95% confidence intervals for each predictor were calculated by use of random effects models. Stratified analyses by type of implanted valve were performed. Results We obtained data from 41 studies that included 11,210 TAVR patients, of whom 17% required PPM implantation after intervention. The rate of PPM ranged from 2% to 51% in individual studies (with a median of 28% for the Medtronic CoreValve Revalving System [MCRS] and 6% for the Edwards SAPIEN valve [ESV]). The summary estimates indicated increased risk of PPM after TAVR for men (RR: 1.23; p < 0.01); for patients with first-degree AV block (RR: 1.52; p < 0.01), left anterior hemiblock (RR: 1.62; p < 0.01), or right bundle branch block (RR: 2.89; p < 0.01) at baseline; and for patients with intraprocedural AV block (RR: 3.49; p < 0.01). These variables remained significant predictors when only patients treated with the MCRS bioprosthesis were considered. The data for ESV were limited. Unadjusted estimates indicated a 2.5-fold higher risk for PPM implantation for patients who received the MCRS than for those who received the ESV. Conclusions Male sex, baseline conduction disturbances, and intraprocedural AV block emerged as predictors of PPM implantation after TAVR. This study provides useful tools to identify high-risk patients and to guide clinical decision making before and after intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 13-year-old male neutered domestic shorthaired cat had repeated syncopal episodes over a 6 month period, which had variable duration and continued to increase in frequency. Intermittent ventricular asystole, due to complete heart block, and hyperthyroidism were documented. As the syncopal episodes did not respond to a 4-week medical treatment and symptoms became severe, a transvenous ventricular demand pacemaker system (VVIM) was implanted via the external jugular vein. The unipolar lead was tunneled subcutaneously and connected with the generator in a preformed ventral abdominal muscle pocket. During follow up of 18-months there were no recurrences of the syncopal episodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. METHODS AND RESULTS We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. CONCLUSION Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Contemporary pacemakers (PMs) are powered by primary batteries with a limited energy-storing capacity. PM replacements because of battery depletion are common and unpleasant and bear the risk of complications. Batteryless PMs that harvest energy inside the body may overcome these limitations. OBJECTIVE: The goal of this study was to develop a batteryless PM powered by a solar module that converts transcutaneous light into electrical energy. METHODS: Ex vivo measurements were performed with solar modules placed under pig skin flaps exposed to different irradiation scenarios (direct sunlight, shade outdoors, and indoors). Subsequently, 2 sunlight-powered PMs featuring a 4.6-cm2 solar module were implanted in vivo in a pig. One prototype, equipped with an energy buffer, was run in darkness for several weeks to simulate a worst-case scenario. RESULTS: Ex vivo, median output power of the solar module was 1963 μW/cm2 (interquartile range [IQR] 1940-2107 μW/cm2) under direct sunlight exposure outdoors, 206 μW/cm2 (IQR 194-233 μW/cm2) in shade outdoors, and 4 μW/cm2 (IQR 3.6-4.3 μW/cm2) indoors (current PMs use approximately 10-20 μW). Median skin flap thickness was 4.8 mm. In vivo, prolonged SOO pacing was performed even with short irradiation periods. Our PM was able to pace continuously at a rate of 125 bpm (3.7 V at 0.6 ms) for 1½ months in darkness. CONCLUSION: Tomorrow's PMs might be batteryless and powered by sunlight. Because of the good skin penetrance of infrared light, a significant amount of energy can be harvested by a subcutaneous solar module even indoors. The use of an energy buffer allows periods of darkness to be overcome.