35 resultados para oxygen evolution rate

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oxygen-sensitive 3He-MRI was studied for the detection of differences in intrapulmonary oxygen partial pressure (pO2) between patients with normal lung transplants and those with bronchiolitis obliterans syndrome (BOS). Using software developed in-house, oxygen-sensitive 3He-MRI datasets from patients with normal lung grafts (n = 8) and with BOS (n = 6) were evaluated quantitatively. Datasets were acqiured on a 1.5-T system using a spoiled gradient echo pulse sequence. Underlying diseases were pulmonary emphysema (n = 10 datasets) and fibrosis (n = 4). BOS status was verified by pulmonary function tests. Additionally, 3He-MRI was assessed blindedly for ventilation defects. Median intrapulmonary pO2 in patients with normal lung grafts was 146 mbar compared with 108 mbar in patients with BOS. Homogeneity of pO2 distribution was greater in normal grafts (standard deviation pO2 34 versus 43 mbar). Median oxygen decrease rate during breath hold was higher in unaffected patients (-1.75 mbar/s versus -0.38 mbar/s). Normal grafts showed fewer ventilation defects (5% versus 28%, medians). Oxygen-sensitive 3He-MRI appears capable of demonstrating differences of intrapulmonary pO2 between normal lung grafts and grafts affected by BOS. Oxygen-sensitive 3He-MRI may add helpful regional information to other diagnostic techniques for the assessment and follow-up of lung transplant recipients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have cloned and sequenced a 10.22-kb fragment of the genomic locus of the porcine tumor necrosis factor-encoding genes, TNF-alpha and TNF-beta. A liver genomic DNA library, partially digested with Sau3AI, was cloned into the phage lambda EMBL4 and screened with a porcine TNF-alpha cDNA probe. Analysis showed that both the TNF-alpha and TNF-beta genes were present on the cloned fragment. In addition, the cloned fragment contained about 2 kb of repetitive sequences 5' to the TNF-beta gene. The TNF genes are arranged in a tandem repeat, as is the case for the human, mouse and rabbit TNF genes. The comparison of both genes with their human homologues displayed a considerable degree of conservation (80%), suggesting an equal evolution rate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Keywords High-pressure fluids · Whiteschists · U–Pb dating · Oxygen isotopes · Ion microprobe · Metasomatism Introduction The subduction of crustal material to mantle depths and its chemical modification during burial and exhumation contribute to element recycling in the mantle and the formation of new crust through arc magmatism. Crustal rocks that Abstract The Dora-Maira whiteschists derive from metasomatically altered granites that experienced ultrahighpressure metamorphism at ~750 °C and 40 kbar during the Alpine orogeny. In order to investigate the P–T–time– fluid evolution of the whiteschists, we obtained U–Pb ages from zircon and monazite and combined those with trace element composition and oxygen isotopes of the accessory minerals and coexisting garnet. Zircon cores are the only remnants of the granitic protolith and still preserve a Permian age, magmatic trace element compositions and δ18O of ~10 ‰. Thermodynamic modelling of Si-rich and Si-poor whiteschist compositions shows that there are two main fluid pulses during prograde subduction between 20 and 40 kbar. In Si-poor samples, the breakdown of chlorite to garnet + fluid occurs at ~22 kbar. A first zircon rim directly overgrowing the cores has inclusions of prograde phlogopite and HREE-enriched patterns indicating zircon growth at the onset of garnet formation. A second main fluid pulse is documented close to peak metamorphic conditions in both Si-rich and Si-poor whiteschist when talc + kyanite react to garnet + coesite + fluid. A second metamorphic overgrowth on zircon with HREE depletion was observed in the Si-poor whiteschists, whereas a single metamorphic overgrowth capturing phengite and talc inclusions was observed in the Si-rich whiteschists. Garnet rims, zircon rims and monazite are in chemical and isotopic equilibrium for oxygen, demonstrating that they all formed at peak metamorphism at 35 Ma as constrained by the age of monazite (34.7 ± 0.4 Ma) and zircon rims (35.1 ± 0.8 Ma). The prograde zircon rim in Si-poor whiteschists has an age that is within error indistinguishable from the age of peak metamorphic conditions, consistent with a minimum rate of subduction of 2 cm/year for the Dora-Maira unit. Oxygen isotope values for zircon rims, monazite and garnet are equal within error at 6.4 ± 0.4 ‰, which is in line with closed-system equilibrium fractionation during prograde to peak temperatures. The resulting equilibrium Δ18Ozircon-monazite at 700 ± 20 °C is 0.1 ± 0.7 ‰. The in situ oxygen isotope data argue against an externally derived input of fluids into the whiteschists. Instead, fluidassisted zircon and monazite recrystallisation can be linked to internal dehydration reactions during prograde subduction. We propose that the major metasomatic event affecting the granite protolith was related to hydrothermal seafloor alteration post-dating Jurassic rifting, well before the onset of Alpine subduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Norcamphor (C7H10O) was subjected to plane strain simple shear in a see-through deformation rig at four different strain rate and temperature conditions. Two transient stages in the microfabric evolution to steady state are distinguished. The grain scale mechanisms associated with the microstructural and textural evolution vary with the applied temperature, strain rate and strain. In high-temperature-low-strain-rate experiments, computer integrated polarization microscopy reveals that the texture evolution is closely related to the crystallographic rotation paths and rotation rates of individual grains. High c-axis rotation rates at low to intermediate shear strains are related to the development of a symmetrical c-axis cross girdle by the end of the first transient stage (γ = 1.5 to 2). During the second transient stage (γ = 1.5 to 6), the cross girdle yields to an oblique c-axis single girdle as c-axis rotation rates decrease and the relative activity of grain boundary migration recrystallization increases. Steady state (γ > 8) is characterized by a stable end orientation of the sample texture and the cyclic growth, rotation and consumption of individual grains within the aggregate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The goal when resuscitating trauma patients is to achieve adequate tissue perfusion. One parameter of tissue perfusion is tissue oxygen saturation (StO2), as measured by near infrared spectroscopy. Using a commercially available device, we investigated whether clinically relevant blood loss of 500 ml in healthy volunteers can be detected by changes in StO2 after a standardized ischemic event. Methods We performed occlusion of the brachial artery for 3 minutes in 20 healthy female blood donors before and after blood donation. StO2 and total oxygenated tissue hemoglobin (O2Hb) were measured continuously at the thenar eminence. 10 healthy volunteers were assessed in the same way, to examine whether repeated vascular occlusion without blood donation exhibits time dependent effects. Results Blood donation caused a substantial decrease in systolic blood pressure, but did not affect resting StO2 and O2Hb values. No changes were measured in the blood donor group in the reaction to the vascular occlusion test, but in the control group there was an increase in the O2Hb rate of recovery during the reperfusion phase. Conclusion StO2 measured at the thenar eminence seems to be insensitive to blood loss of 500 ml in this setting. Probably blood loss greater than this might lead to detectable changes guiding the treating physician. The exact cut off for detectable changes and the time effect on repeated vascular occlusion tests should be explored further. Until now no such data exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations-more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad-scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early-burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long-term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background As predicted by theory, traits associated with reproduction often evolve at a comparatively high speed. This is especially the case for courtship behaviour which plays a central role in reproductive isolation. On the other hand, courtship behavioural traits often involve morphological and behavioural adaptations in both sexes; this suggests that their evolution might be under severe constraints, for instance irreversibility of character loss. Here, we use a recently proposed method to retrieve data on a peculiar courtship behavioural trait, i.e. antennal coiling, for 56 species of diplazontine parasitoid wasps. On the basis of a well-resolved phylogeny, we reconstruct the evolutionary history of antennal coiling and associated morphological modifications to study the mode of evolution of this complex character system. Results Our study reveals a large variation in shape, location and ultra-structure of male-specific modifications on the antennae. As for antennal coiling, we find either single-coiling, double-coiling or the absence of coiling; each state is present in multiple genera. Using a model comparison approach, we show that the possession of antennal modifications is highly correlated with antennal coiling behaviour. Ancestral state reconstruction shows that both antennal modifications and antennal coiling are highly congruent with the molecular phylogeny, implying low levels of homoplasy and a comparatively low speed of evolution. Antennal coiling is lost on two independent occasions, and never reacquired. A zero rate of regaining antennal coiling is supported by maximum parsimony, maximum likelihood and Bayesian approaches. Conclusions Our study provides the first comparative evidence for a tight correlation between male-specific antennal modifications and the use of the antennae during courtship. Antennal coiling in Diplazontinae evolved at a comparatively low rate, and was never reacquired in any of the studied taxa. This suggests that the loss of antennal coiling is irreversible on the timescale examined here, and therefore that evolutionary constraints have greatly influenced the evolution of antennal courtship in this group of parasitoid wasps. Further studies are needed to ascertain whether the loss of antennal coiling is irreversible on larger timescales, and whether evolutionary constraints have influenced courtship behavioural traits in a similar way in other groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bombesin receptors are under intense investigation as molecular targets since they are overexpressed in several prevalent solid tumors. We rationally designed and synthesized a series of modified bombesin (BN) peptide analogs to study the influence of charge and spacers at the N-terminus, as well as amino acid substitutions, on both receptor binding affinity and pharmacokinetics. This enabled development of a novel (64/67)Cu-labeled BN peptide for PET imaging and targeted radiotherapy of BN receptor-positive tumors. Our results show that N-terminally positively charged peptide ligands had significantly higher affinity to human gastrin releasing peptide receptor (GRPr) than negatively charged or uncharged ligands (IC(50): 3.2±0.5 vs 26.3±3.5 vs 41.5±2.5 nM). The replacement of Nle(14) by Met, and deletion of D-Tyr(6), further resulted in 8-fold higher affinity. Contrary to significant changes to human GRPr binding, modifications at the N-terminal and at the 6(th), 11(th), and 14(th) position of BN induced only slight influences on affinity to mouse GRPr. [Cu(II)]-CPTA-[βAla(11)] BN(7-14) ([Cu(II)]-BZH7) showed the highest internalization rate into PC-3 cells with relatively slow efflux because of its subnanomolar affinity to GRPr. Interestingly, [(64/67)Cu]-BZH7 also displayed similar affinities to the other 2 human BN receptor subtypes. In vivo studies showed that [(64/67)Cu]-BZH7 had a high accumulation in PC-3 xenografts and allowed for clear-cut visualization of the tumor in PET imaging. In addition, a CPTA-glycine derivative, forming a hippurane-type spacer, enhanced kidney clearance of the radiotracer. These data indicate that the species variation of BN receptor plays an important role in screening radiolabeled BN. As well, the positive charge from the metallated complex at the N-terminal significantly increases affinity to human GRPr. Application of these observations enabled the novel ligand [(64/67)Cu]-BZH7 to clearly visualize PC-3 tumors in vivo. This study provides a strong starting point for optimizing radiopeptides for targeting carcinomas that express any of the BN receptor subtypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanical ventilation (MV) is life-saving but potentially harmful for lungs of premature infants. So far, animal models dealt with the acute impact of MV on immature lungs, but less with its delayed effects. We used a newborn rodent model including non-surgical and therefore reversible intubation with moderate ventilation and hypothesized that there might be distinct gene expression patterns after a ventilation-free recovery period compared to acute effects directly after MV. Newborn rat pups were subjected to 8 hr of MV with 60% oxygen (O(2)), 24 hr after injection of lipopolysaccharide (LPS), intended to create a low inflammatory background as often recognized in preterm infants. Animals were separated in controls (CTRL), LPS injection (LPS), or full intervention with LPS and MV with 60% O(2) (LPS + MV + O(2)). Lungs were recovered either directly following (T:0 hr) or 48 hr after MV (T:48 hr). Histologically, signs of ventilator-induced lung injury (VILI) were observed in LPS + MV + O(2) lungs at T:0 hr, while changes appeared similar to those known from patients with chronic lung disease (CLD) with fewer albeit larger gas exchange units, at T:48 hr. At T:0 hr, LPS + MV + O(2) increased gene expression of pro-inflammatory MIP-2. In parallel anti-inflammatory IL-1Ra gene expression was increased in LPS and LPS + MV + O(2) groups. At T:48 hr, pro- and anti-inflammatory genes had returned to their basal expression. MMP-2 gene expression was decreased in LPS and LPS + MV + O(2) groups at T:0 hr, but no longer at T:48 hr. MMP-9 gene expression levels were unchanged directly after MV. However, at T:48 hr, gene and protein expression increased in LPS + MV + O(2) group. In conclusion, this study demonstrates the feasibility of delayed outcome measurements after a ventilation-free period in newborn rats and may help to further understand the time-course of molecular changes following MV. The differences obtained from the two time points could be interpreted as an initial transitory increase of inflammation and a delayed impact of the intervention on structure-related genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major histocompatibility complex (MHC) antigen-presenting genes are the most variable loci in vertebrate genomes. Host-parasite co-evolution is assumed to maintain the excessive polymorphism in the MHC loci. However, the molecular mechanisms underlying the striking diversity in the MHC remain contentious. The extent to which recombination contributes to the diversity at MHC loci in natural populations is still controversial, and there have been only few comparative studies that make quantitative estimates of recombination rates. In this study, we performed a comparative analysis for 15 different ungulates species to estimate the population recombination rate, and to quantify levels of selection. As expected for all species, we observed signatures of strong positive selection, and identified individual residues experiencing selection that were congruent with those constituting the peptide-binding region of the human DRB gene. However, in addition for each species, we also observed recombination rates that were significantly different from zero on the basis of likelihood-permutation tests, and in other non-quantitative analyses. Patterns of synonymous and non-synonymous sequence diversity were consistent with differing demographic histories between species, but recent simulation studies by other authors suggest inference of selection and recombination is likely to be robust to such deviations from standard models. If high rates of recombination are common in MHC genes of other taxa, re-evaluation of many inference-based phylogenetic analyses of MHC loci, such as estimates of the divergence time of alleles and trans-specific polymorphism, may be required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS: Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS: The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION: Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous infusion of intravenous prostaglandin E1 (PgE1, 2.5 mug/kg/min) was used to determine how vasodilation affects oxygen consumption of the microvascular wall and tissue pO(2) in the hamster window chamber model. While systemic measurements (mean arterial pressure and heart rate) and central blood gas measurements were not affected, PgE1 treatment caused arteriolar (64.6 +/- 25.1 microm) and venular diameter (71.9 +/- 29.5 microm) to rise to 1.15 +/- 0.21 and 1.06 +/- 0.19, respectively, relative to baseline. Arteriolar (3.2 x 10(-2) +/- 4.3 x 10(-2) nl/s) and venular flow (7.8 x 10(-3) +/- 1.1 x 10(-2)/s) increased to 1.65 +/- 0.93 and 1.32 +/- 0.72 relative to baseline. Interstitial tissue pO(2) was increased significantly from baseline (21 +/- 8 to 28 +/- 7 mmHg; P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the microvascular wall decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). The arteriolar vessel wall gradient, a measure of oxygen consumption by the vascular wall, decreased from 20 +/- 6 to 16 +/- 3 mmHg (P < 0.001). This reduction reflects a 20% decrease in oxygen consumption by the vessel wall and up to 50% when cylindrical geometry is considered. The venular vessel wall gradient decreased from 12 +/- 4 to 9 +/- 4 mmHg (P < 0.001). Thus PgE1-mediated vasodilation has a positive microvascular effect: enhancement of tissue perfusion by increasing flow and then augmentation of tissue oxygenation by reducing oxygen consumption by the microvascular wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian birth is accompanied by profound changes in metabolic rate that can be described in terms of body size relationship (Kleiber's rule). Whereas the fetus, probably as an adaptation to the low intrauterine pO2, exhibits an "inappropriately" low, adult-like specific metabolic rate, the term neonate undergoes a rapid metabolic increase up to the level to be expected from body size. A similar, albeit slowed, "switching-on" of metabolic size allometry is found in human preterm neonates whereas animals that are normally born in a very immature state are able to retard or even suppress the postnatal metabolic increase in favor of weight gain and O2 supply. Moreover, small immature mammalian neonates exhibit a temporary oxyconforming behavior which enhances their hypoxia tolerance, yet is lost to the extent by which the size-adjusted metabolic rate is "locked" by increasing mitochondrial density. Beyond the perinatal period, there are no other deviations from metabolic size allometry among mammals except in hibernation where the temporary "switching-off" of Kleiber's rule is accompanied by a deep reduction in tissue pO2. This gives support to the hypothesis that the postnatal metabolic increase represents an "escape from oxygen" similar to the evolutionary roots of mitochondrial respiration, and that the overall increase in specific metabolic rate with decreasing size might contribute to prevent tissues from O2 toxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, a new oxygenator (Dideco 903 [D903], Dideco, Mirandola, Italy) has been introduced to the perfusion community, and we set about testing its oxygen transfer performance and then comparing it to two other models. This evaluation was based on the comparison between oxygen transfer slope, gas phase arterial oxygen gradients, degree of blood shunting, maximum oxygen transfer, and diffusing capacity calculated for each membrane. Sixty patients were randomized into three groups of oxygenators (Dideco 703 [D703], Dideco; D903; and Quadrox, Jostra Medizintechnik AG, Hirrlingen, Germany) including 40/20 M/F of 68.6 +/- 11.3 years old, with a body weight of 71.5 +/- 12.1 kg, a body surface area (BSA) of 1.84 +/- 0.3 m(2), and a theoretical blood flow rate (index 2.4 times BSA) of 4.4 +/- 0.7 L/min. The maximum oxygen transfer (VO(2)) values were 313 mL O(2)/min (D703), 579 mL O(2)/min (D903), and 400 mL O(2)/min (Quadrox), with the D903 being the most superior (P < 0.05). Oxygen (O(2)) gradients were 320 mm Hg (D703), 235 mm Hg (D903), and 247 mm Hg (Quadrox), meaning D903 and Quadrox are more efficient versus the D703 (P < 0.05). Shunt fraction (Qs/Qt) and diffusing capacity (DmO(2)) were comparable (P = ns). Diffusing capacity values indexed to BSA (DmO(2)/m(2)) were 0.15 mL O(2)/min/mm Hg/m(2) (D703), 0.2 mL O(2)/min/mm Hg/m(2) (D903), and 0.18 mL O(2)/min/mm Hg/m(2) (Quadrox) with D903 outperforming D703 (P < 0.0005). During hypothermia (32.0 +/- 0.3 degrees C), there was a lower absolute and relative VO(2 )for all three oxygenators (P = ns). The O(2) gradients, DmO(2) and DmO(2)/m(2), were significantly lower for all oxygenators (P < 0.01). Also, Qs/Qt significantly rose for all oxygenators (P < 0.01). The oxygen transfer curve is characteristic to each oxygenator type and represents a tool to quantify oxygenator performance. Using this parameter, we demonstrated significant differences among commercially available oxygenators. However, all three oxygenators are considered to meet the oxygen needs of the patients.