7 resultados para oxalic acid

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aerosol samples were collected in Zurich, Switzerland, at an urban background site and were analyzed with size exclusion chromatography (SEC) and laser/desorption ionization mass spectrometry (LDI-MS) for water-soluble organic compounds with high molecular weight. Daily samples were collected during two campaigns in winter and summer, for 1 month each. The concentration of high-molecular-weight compounds (humic-like substances (HULIS)) was between 0.4 and 4 μg/m3 in winter and summer. The most intense signals in the LDI-MS mass spectra were measured between m/z150 and 500, comparing well with the mode of the two main high mass peaks determined with SEC corresponding to masses between 200 and 600 Da. For the maximum molecular weight, however, different results were obtained by the two techniques: whereas a maximum molecular weight between 1300 and 3300 Da was found with SEC, hardly any peaks above m/z700 were measured with LDI-MS. During summer the maximum molecular weight of HULIS (determined with SEC) correlates positively with several parameters such as ozone and increased temperature indicative of enhanced atmospheric photo-oxidation. The HULIS concentration also correlates positively with the oxalic acid concentration in the particles. This suggests that HULIS are generated by secondary processes in summer. The lack of such correlations during winter suggests that other sources and processes might be important during colder seasons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this perspective article, we revise some of the empirical and semi-empirical strategies for predicting how hydrogen bonding affects molecular and atomic polarizabilities in aggregates. We use p-nitroaniline and hydrated oxalic acid as working examples to illustrate the enhancement of donor and acceptor functional-group polarizabilities and their anisotropy. This is significant for the evaluation of electrical susceptibilities in crystals; and the properties derived from them like the refractive indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.