17 resultados para over-order premiums
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
UNLABELLED (111)In-DOTA-exendin-4 SPECT/CT has been shown to be highly efficient in the detection of insulinomas. We aimed at determining whether novel PET/CT imaging with [Nle(14),Lys(40)(Ahx-DOTA-(68)Ga)NH2]exendin-4 ((68)Ga-DOTA-exendin-4) is feasible and sensitive in detecting benign insulinomas. METHODS (68)Ga-DOTA-exendin-4 PET/CT and (111)In-DOTA-exendin-4 SPECT/CT were performed in a randomized cross-over order on 5 patients with endogenous hyperinsulinemic hypoglycemia. The gold standard for comparison was the histologic diagnosis after surgery. RESULTS In 4 patients histologic diagnosis confirmed a benign insulinoma, whereas one patient refused surgery despite a positive (68)Ga-DOTA-exendin-4 PET/CT scan. In 4 of 5 patients, previously performed conventional imaging (CT or MR imaging) was not able to localize the insulinoma. (68)Ga-DOTA-exendin-4 PET/CT correctly identified the insulinoma in 4 of 4 patients, whereas (111)In-DOTA-exendin-4 SPECT/CT correctly identified the insulinoma in only 2 of 4 patients. CONCLUSION These preliminary data suggest that the use of (68)Ga-DOTA-exendin-4 PET/CT in detecting hidden insulinomas is feasible.
Resumo:
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.
Resumo:
BACKGROUND: Children in emergencies need peripheral intravenous (IV) access in order to receive drugs or fluids. The success of IV access is associated with the age of patients and fails in up to 50% of children younger than 6 years. In such situations, it is essential that physicians and paramedics have a tool and easily learnable skills with a high chance of success. According to international guidelines intraosseous (IO) access would be the next step after failed IV access. Our hypothesis was that the success rate in IO puncturing can be improved by standardizing the training; so we developed an IO workshop. METHODS: Twenty-eight hospitals and ambulance services participated in an evaluation process over 3 years. IO workshops and the distribution of standardized IO sets were coordinated by the study group of the University Hospital of Berne. Any attempted or successful IO punctures were evaluated with a standardized interview. RESULTS: We investigated 35 applications in 30 patients (a total of 49 punctures) between November 2001 and December 2004. IO puncture was not successful in 5 patients. The success rate depended neither on the occupation nor the experience of users. Attendance at a standardized IO workshop increased the overall success rate from 77% to 100%, which was statistically not significant (P = 0.074). CONCLUSIONS: Standardized training in IO puncturing seems to improve success more than previous experience and occupation of providers. However, we could not show a significant increase in success rate after this training. Larger supranational studies are needed to show a significant impact of teaching on rarely used emergency skills.
Resumo:
Background Young children are known to be the most frequent hospital users compared to older children and young adults. Therefore, they are an important population from economic and policy perspectives of health care delivery. In Switzerland complete hospitalization discharge records for children [<5 years] of four consecutive years [2002–2005] were evaluated in order to analyze variation in patterns of hospital use. Methods Stationary and outpatient hospitalization rates on aggregated ZIP code level were calculated based on census data provided by the Swiss federal statistical office (BfS). Thirty-seven hospital service areas for children [HSAP] were created with the method of "small area analysis", reflecting user-based health markets. Descriptive statistics and general linear models were applied to analyze the data. Results The mean stationary hospitalization rate over four years was 66.1 discharges per 1000 children. Hospitalizations for respiratory problem are most dominant in young children (25.9%) and highest hospitalization rates are associated with geographical factors of urban areas and specific language regions. Statistical models yielded significant effect estimates for these factors and a significant association between ambulatory/outpatient and stationary hospitalization rates. Conclusion The utilization-based approach, using HSAP as spatial representation of user-based health markets, is a valid instrument and allows assessing the supply and demand of children's health care services. The study provides for the first time estimates for several factors associated with the large variation in the utilization and provision of paediatric health care resources in Switzerland.
Resumo:
The aim of this study was to investigate the effect of single-pulse transcranial magnetic stimulation on the triggering of saccades. The right frontal eye field was stimulated during modified gap and overlap paradigms with flashed presentation of the lateral visual target of 80 ms. In order to examine possible facilitating or inhibitory effects on saccade triggering, three different time intervals of stimulation were chosen, i.e. simultaneously with onset of the target, during the presentation and after target end. Stimulation applied simultaneously with target onset significantly decreased the latency of contralateral saccades in the gap but not in the overlap paradigm. Stimulation after target end significantly increased saccade latency for both sides in the gap paradigm and for the contralateral side in the overlap paradigm. Stimulation during presentation had no effect in either paradigm. The results show that, depending on the time interval and the paradigm tested, a facilitation or inhibition of saccade triggering can be achieved. The results are discussed in a context of two probable transcranial magnetic stimulation effects, a direct interference with the frontal eye field on the one hand and a remote interference with the superior colliculus on the other hand.
Resumo:
We analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of −0.08°C (−0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called “global dimming” period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.
Resumo:
The near-surface wind and temperature regime at three points in the Atacama Desert of northern Chile is described using two-year multi-level measurements from 80-m towers located in an altitude range between 2100 and 2700 m ASL. The data reveal the frequent development of strong nocturnal drainage flows at all sites. Down-valley nose-shaped wind speed profiles are observed with maximum values occurring at heights between 20 m and 60 m AGL. The flow intensity shows considerable inter-daily variability and a seasonal modulation of maximum speeds, which in the cold season can attain hourly average values larger than 20 m s−1. Turbulent mixing appears significant over the full tower layer, affecting the curvature of the nighttime temperature profile and possibly explaining the observed increase of surface temperatures in the down-valley direction. Nocturnal valley winds and temperatures are weakly controlled by upper-air conditions observed at the nearest aerological station. Estimates of terms in the momentum budget for the development and the quasi-stationary phases of the down-valley flows suggest that the pressure gradient force due to the near-surface cooling along the sloping valley axes plays an important role in these drainage flows. A scale for the jet nose height of equilibrium turbulent down-slope jets is proposed, based on surface friction velocity and surface inversion intensity. At one of the sites this scale explains about 70% of the case-to-case observed variance of jet nose heights. Further modeling and observational work is needed, however, in order to better define the dynamics, extent and turbulence structure of this flow system, which has significant wind-energy, climatic and environmental implications.
Resumo:
The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the Wilson loop. General arguments tell us that the lowest lying spectral peak encodes, through its position and shape, the real and imaginary parts of this complex potential. Here we benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. In other words, we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real and imaginary parts and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. Access to the full spectrum allows an investigation of spectral features that do not contribute to the potential but can pose a challenge to numerical attempts of an analytic continuation from imaginary time data. Differences in these contributions between the Wilson loop and gauge fixed Wilson line correlators are discussed. To better understand the difficulties in a numerical extraction we deploy the maximum entropy method with extended search space to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary parts are reproduced. Possible venues for improvement of the extraction strategy are discussed.
Resumo:
Unique contributions of Big Five personality factors to academic performance in young elementary school children were explored. Extraversion and Openness (labeled “Culture” in our study) uniquely contributed to academic performance, over and above the contribution of executive functions in first and second grade children (N = 446). Well established associations between Conscientiousness and academic performance, however, could only be replicated with regard to zero-order correlations. Executive functions (inhibition, updating, and shifting), for their part, proved to be powerful predictors of academic performance. Results were to some extent dependent on the criterion with which academic performance was measured: Both personality factors had stronger effects on grades than on standardized achievement tests, whereas the opposite was true for executive functions. Finally, analyses on gender differences revealed that Extraversion and Openness/Culture played a more dominant role in girls than in boys, but only regarding grades.
Children's performance estimation in mathematics and science tests over a school year: A pilot study
Resumo:
The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.
Resumo:
The future Internet architecture aims to reformulate the way the content/service is requested to make it location-independent. Information-Centric Networking is a new network paradigm, which tries to achieve this goal by making content objects identified and requested by name instead of address. In this paper, we extend Information-Centric Networking architecture to support services in order to be requested and invoked by names. We present NextServe framework, which is a service framework with a human-readable self-explanatory naming scheme. NextServe is inspired by the object-oriented programming paradigm and is applicable with real-world scenarios.
Resumo:
The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Aura Microwave Limb Sounder (Aura/MLS) ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30). In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5%) than in summer (−18 ± 4%) (compared to mean values around midnight). For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. There are some indications that strong temperature tides can suppress the diurnal variation of stratospheric ozone via the anticorrelation of temperature and ozone. That means the spatio-temporal variability of solar thermal tides seems to affect the diurnal cycle of stratospheric ozone.
Resumo:
The proliferation of multimedia content and the demand for new audio or video services have fostered the development of a new era based on multimedia information, which allowed the evolution of Wireless Multimedia Sensor Networks (WMSNs) and also Flying Ad-Hoc Networks (FANETs). In this way, live multimedia services require real-time video transmissions with a low frame loss rate, tolerable end-to-end delay, and jitter to support video dissemination with Quality of Experience (QoE) support. Hence, a key principle in a QoE-aware approach is the transmission of high priority frames (protect them) with a minimum packet loss ratio, as well as network overhead. Moreover, multimedia content must be transmitted from a given source to the destination via intermediate nodes with high reliability in a large scale scenario. The routing service must cope with dynamic topologies caused by node failure or mobility, as well as wireless channel changes, in order to continue to operate despite dynamic topologies during multimedia transmission. Finally, understanding user satisfaction on watching a video sequence is becoming a key requirement for delivery of multimedia content with QoE support. With this goal in mind, solutions involving multimedia transmissions must take into account the video characteristics to improve video quality delivery. The main research contributions of this thesis are driven by the research question how to provide multimedia distribution with high energy-efficiency, reliability, robustness, scalability, and QoE support over wireless ad hoc networks. The thesis addresses several problem domains with contributions on different layers of the communication stack. At the application layer, we introduce a QoE-aware packet redundancy mechanism to reduce the impact of the unreliable and lossy nature of wireless environment to disseminate live multimedia content. At the network layer, we introduce two routing protocols, namely video-aware Multi-hop and multi-path hierarchical routing protocol for Efficient VIdeo transmission for static WMSN scenarios (MEVI), and cross-layer link quality and geographical-aware beaconless OR protocol for multimedia FANET scenarios (XLinGO). Both protocols enable multimedia dissemination with energy-efficiency, reliability and QoE support. This is achieved by combining multiple cross-layer metrics for routing decision in order to establish reliable routes.
Resumo:
This study aimed at analysing the hydrological changes in the Lake Kivu Basin over the last seven decades with focus on the response of the lake water level to meteorological factors and hydropower dam construction. Historical precipitation and lake water levels were acquired from literature, local agencies and from global databases in order to compile a coherent dataset. The net lake inflow was modelled using a soil water balance model and the water levels were reconstructed using a parsimonious lake water balance model. The soil water balance shows that 370 mm yr−1 (25%) of the precipitation in the catchment contributes to the runoff and baseflow whereas 1100 mm yr−1 (75%) contributes to the evapotranspiration. A review of the lake water balance resulted in the following estimates of hydrological contributions: 55%, 25%, and 20% of the overall inputs from precipitation, surface inflows, and subaquatic groundwater discharge, respectively. The overall losses were 58% and 42% for lake surface evaporation and outflow discharge, respectively. The hydrological model used indicated a remarkable sensitivity of the lake water levels to hydrometeorological variability up to 1977, when the outflow bed was artificially widened.
Resumo:
The ground-based radiometer GROMOS, stationed in Bern (47.95° N, 7.44° E), Switzerland, has a unique dataset: it obtains ozone profiles from November 1994 to present with a time resolution of 30 min and equal quality during night- and daytime. Here, we derive a monthly climatology of the daily ozone cycle from 17 yr of GROMOS observation. We present the diurnal ozone variation of the stratosphere and mesosphere. Characterizing the diurnal cycle of stratospheric ozone is important for correct trend estimates of the ozone layer derived from satellite observations. The diurnal ozone cycle from GROMOS is compared to two models: The Whole Atmosphere Community Climate Model (WACCM) and the Hamburg Model of Neutral and Ionized Atmosphere (HAMMONIA). Aura Microwave Limb Sounder (Aura/MLS) ozone data, from night- and daytime overpasses over Bern, have also been included in the comparison. Generally, observation and models show good qualitative agreement: in the lower mesosphere, daytime ozone is for both GROMOS and models around 25% less than nighttime ozone (reference is 22:30–01:30). In the stratosphere, ozone reaches its maximum in the afternoon showing values several percent larger than the midnight value. It is important that diurnal ozone variations of this order are taken into account when merging different data sets for the derivation of long-term ozone trends in the stratosphere. Further, GROMOS and models indicate a seasonal behavior of daily ozone variations in the stratosphere with a larger afternoon maximum during daytime in summer than in winter. At 0.35 hPa, observations from GROMOS and Aura/MLS show a seasonal pattern in diurnal ozone variations with larger relative amplitudes during daytime in winter (−25 ± 5%) than in summer (−18 ± 4%) (compared to mean values around midnight). For the first time, a time series of the diurnal variations in ozone is presented: 17 yr of GROMOS data show strong interannual variations in the diurnal ozone cycle for both the stratosphere and the mesosphere. There are some indications that strong temperature tides can suppress the diurnal variation of stratospheric ozone via the anticorrelation of temperature and ozone. That means the spatio-temporal variability of solar thermal tides seems to affect the diurnal cycle of stratospheric ozone.