13 resultados para osmotic shrinkage

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesh fixation during laparoscopic ventral hernia repair can be performed using transfascial sutures or metal tacks. The aim of the present study is to compare mesh shrinkage and pain between two different techniques of mesh fixation in a prospective randomized trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypernatraemia is common in critically ill patients and has been shown to be an independent predictor of mortality. Osmotic urea diuresis can cause hypernatraemia due to significant water losses but is often not diagnosed. Free water clearance (FWC) and electrolyte free water clearance (EFWC) were proposed to quantify renal water handling. We aimed to (i) identify patients with hypernatraemia due to osmotic urea diuresis and (ii) investigate whether FWC and EFWC are helpful in identifying renal loss of free water.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike all other organisms, parasitic protozoa of the family Trypanosomatidae maintain a large cellular pool of proline that, together with the alanine pool, serve as alternative carbon sources as well as reservoirs of organic osmolytes. These reflect adaptation to their insect vectors whose haemolymphs are exceptionally rich in the two amino acids. In the present study we identify and characterize a new neutral amino acid transporter, LdAAP24, that translocates proline and alanine across the Leishmania donovani plasma membrane. This transporter fulfils multiple functions: it is the sole supplier for the intracellular pool of proline and contributes to the alanine pool; it is essential for cell volume regulation after osmotic stress; and it regulates the transport and homoeostasis of glutamate and arginine, none of which are its substrates. Notably, we provide evidence that proline and alanine exhibit different roles in the parasitic response to hypotonic shock; alanine affects swelling, whereas proline influences the rate of volume recovery. On the basis of our data we suggest that LdAAP24 plays a key role in parasite adaptation to its varying environments in host and vector, a phenomenon essential for successful parasitism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body height decreases throughout the day due to fluid loss from the intervertebral disk. This study investigated whether spinal shrinkage was greater during workdays compared with nonwork days, whether daily work stressors were positively related to spinal shrinkage, and whether job control was negatively related to spinal shrinkage. In a consecutive 2-week ambulatory field study, including 39 office employees and 512 days of observation, spinal shrinkage was measured by a stadiometer, and calculated as body height in the morning minus body height in the evening. Physical activity was monitored throughout the 14 days by accelerometry. Daily work stressors, daily job control, biomechanical workload, and recreational activities after work were measured with daily surveys. Multilevel regression analyses showed that spinal disks shrank more during workdays than during nonwork days. After adjustment for sex, age, body weight, smoking status, biomechanical work strain, and time spent on physical and low-effort activities during the day, lower levels of daily job control significantly predicted increased spinal shrinkage. Findings add to knowledge on how work redesign that increases job control may possibly contribute to preserving intervertebral disk function and preventing occupational back pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To track down potential sites of material failure in the tile–mortar–substrate systems, locations and intensities of stress concentrations owing to drying-induced shrinkage are investigated. For this purpose, mechanical properties were measured on real systems and used as input parameters for numerical modeling of the effect of shrinkage of substrate and/or mortar using the finite element code Abaqus. On the base of different geometrical set-ups we demonstrate that stress concentrations in the mortar can become critical when (i) substantial mortar shrinkage occurs, (ii) substrate shrinkage can accumulate over considerable spatial distances, particularly (iii) in situations where the mortar layer is not separated from the substrate by a flexible waterproofing membrane. Hence material failure in the system tile–mortar–substrate can be prevented (or reduced) by (i) an application of the tiles after the major stages of substrate shrinkage, (ii) the use of elasto-plastic deformable tile adhesives which can react elastically on local stress concentrations, (iii) the implementation of flexible membranes, and (iv) a reduction of the field size by the installation of flexible joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis.