6 resultados para orthodontic movement
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES To present the development of an experimental model in rats for translational expansive tooth movement. SETTING AND SAMPLE Section of Periodontology at Department of Dentistry Aarhus University. Twenty male Wistar rats in two pilot experimental settings plus seven animals without any intervention serving as controls. MATERIAL AND METHODS The second molar (group P1) or the second and third molar (group P2) in the maxillae of the animals were moved buccally using transpalatal β-titanium springs. In the group P2, two spring types (high force and low force) and two preangulations (0° passive or 30° torsion moment) were tested. The amount and type of tooth movement achieved and the resulting skeletal effect were assessed on microCT images, histological analysis was performed on few selected specimens. RESULTS Expansive translational root movement amounting half a tooth width was achieved. Comparison of the amount of tooth movement at the right and left side of the maxilla showed that the expansion was rather symmetrical in the P2 group. Skeletal widening of the maxilla contributed in the P2 group to approximately one-third of the total root movement, whereas two-thirds were dental movement. CONCLUSION With the model used in the P2 group, further research on translational expansive tooth movement and its effect on the periodontium can be pursued. In models for orthodontic expansion, it is strongly recommended to separately evaluate skeletal and dental effects.
Resumo:
OBJECTIVES To assess the available evidence on the effectiveness of accelerated orthodontic tooth movement through surgical and non-surgical approaches in orthodontic patients. METHODS Randomized controlled trials and controlled clinical trials were identified through electronic and hand searches (last update: March 2014). Orthognathic surgery, distraction osteogenesis, and pharmacological approaches were excluded. Risk of bias was assessed using the Cochrane risk of bias tool. RESULTS Eighteen trials involving 354 participants were included for qualitative and quantitative synthesis. Eight trials reported on low-intensity laser, one on photobiomodulation, one on pulsed electromagnetic fields, seven on corticotomy, and one on interseptal bone reduction. Two studies on corticotomy and two on low-intensity laser, which had low or unclear risk of bias, were mathematically combined using the random effects model. Higher canine retraction rate was evident with corticotomy during the first month of therapy (WMD=0.73; 95% CI: 0.28, 1.19, p<0.01) and with low-intensity laser (WMD=0.42mm/month; 95% CI: 0.26, 0.57, p<0.001) in a period longer than 3 months. The quality of evidence supporting the interventions is moderate for laser therapy and low for corticotomy intervention. CONCLUSIONS There is some evidence that low laser therapy and corticotomy are effective, whereas the evidence is weak for interseptal bone reduction and very weak for photobiomodulation and pulsed electromagnetic fields. Overall, the results should be interpreted with caution given the small number, quality, and heterogeneity of the included studies. Further research is required in this field with additional attention to application protocols, adverse effects, and cost-benefit analysis. CLINICAL SIGNIFICANCE From the qualitative and quantitative synthesis of the studies, it could be concluded that there is some evidence that low laser therapy and corticotomy are associated with accelerated orthodontic tooth movement, while further investigation is required before routine application.
Resumo:
To perform a systematic review on the effect of changes in incisor inclination owing to orthodontic treatment and the occurrence of gingival recession. PubMed, EMBASE Excerpta Medica and CENTRAL of the Cochrane Library were searched and a hand search was performed. From 1925 articles identified, 17 articles were finally included: six experimental animal studies and 11 retrospective clinical studies in humans. More proclined teeth compared with less proclined teeth or untreated teeth had in most studies a higher occurrence or severity of gingival recession. Contradictory results were found regarding a possible statistically significant correlation between the extent of gingival recession and the amount of incisor proclination during treatment, width of attached gingiva, hygiene, periodontal condition or thickness of the symphysis. There are no high quality animal or clinical studies on this topic. Movement of the incisors out of the osseous envelope of the alveolar process may be associated with a higher tendency for developing gingival recessions. The amount of recession found in studies with statistically significant differences between proclined and non-proclined incisors is small and the clinical consequence questionable. Because of the low level of evidence of the included studies, the results should be considered with caution. Further randomized clinical studies including clinical examination of hygiene and gingival condition before, during and after treatment are needed to clarify the effect of orthodontic changes in incisor inclination and the occurrence of gingival recession.
Resumo:
BACKGROUND Controversy exists in the literature between the role of orthodontic treatment and gingival recession. Whilst movement of teeth outside the alveolar bone has been reported as a risk factor for gingival recession, others have found no such association. FINDINGS The Angle Society of Europe devoted a study day to explore the evidence surrounding these controversies. The aim of the day was for a panel of experts to evaluate the current evidence base in relation to either the beneficial or detrimental effects of orthodontic treatment on the gingival tissue. CONCLUSIONS There remains a relatively weak evidence base for the role of orthodontic treatment and gingival recession and thus a need to undertake a risk assessment and appropriate consent prior to the commencement of treatment. In further prospective, well designed trials are needed.
Resumo:
Lacebacks may be used to limit unwanted incisor proclination during initial orthodontic alignment; however, their use has not met with universal approval. This systematic review aims to appraise the evidence in relation to the effectiveness of lacebacks in controlling incisor position during initial alignment. Electronic database searches of published literature (MEDLINE via Ovid, Cochrane Central Register of Controlled Trials, LILACS, and IBECS) and unpublished literature were performed. Search terms used included randomized controlled trial, controlled clinical trial, random allocation, double blind method, orthodontics, and laceback. Data were extracted using custom forms. Risk of bias assessment was made using the Cochrane Collaboration risk of bias tool. The quality of the evidence was also assessed using GRADE. Mean differences in incisor inclination and antero-posterior changes in incisor and molar position during alignment were calculated. Two studies involving 97 participants were found to be at low risk of bias and were included in the quantitative synthesis. The random effects meta-analysis demonstrated that the use of lacebacks was associated with 0.5 mm greater posterior movement of the incisors during alignment; this finding was of limited clinical importance and statistically non-significant [95 per cent confidence interval (CI): -1.25, 0.25, P = 0.19]. Little difference (0.46 mm) was also found between laceback and non-laceback groups with regards to mesial molar movement (95 per cent CI: -0.33, 1.24, P = 0.26). According to the GRADE assessment, the overall quality of evidence relating to the use of lacebacks was high. There is no evidence to support the use of lacebacks for the control of the sagittal position of the incisors during initial orthodontic alignment.
Resumo:
BACKGROUND A range of surgical and non-surgical techniques have received increasing attention in recent years in an effort to reduce the duration of a course of orthodontic treatment. Various surgical techniques have been used; however, uncertainty exists in relation to the effectiveness of these procedures and the possible adverse effects related to them. OBJECTIVES To assess the effects of surgically assisted orthodontics on the duration and outcome of orthodontic treatment. SEARCH METHODS We searched the following electronic databases: the Cochrane Oral Health Group's Trials Register (to 10 September 2014), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 8), MEDLINE via OVID (1946 to 10 September 2014), EMBASE via OVID (1980 to 10 September 2014), LILACS via BIREME (1980 to 10 September 2014), metaRegister of Controlled Trials (to 10 September 2014), ClinicalTrials.gov (to 10 September 2014), and the World Health Organization (WHO) International Clinical Trials Registry Platform (to 10 September 2014). We checked the reference lists of all trials identified for further studies. There were no restrictions regarding language or date of publication in the electronic searches. SELECTION CRITERIA Randomised controlled trials (RCTs) evaluating the effect of surgical adjunctive procedures for accelerating tooth movement compared with conventional treatment (no surgical adjunctive procedure). DATA COLLECTION AND ANALYSIS At least two review authors independently assessed the risk of bias in the trials and extracted data. We used the fixed-effect model and expressed results as mean differences (MD) with 95% confidence intervals (CI). We investigated heterogeneity with reference to both clinical and methodological factors. MAIN RESULTS We included four RCTs involving a total of 57 participants ranging in age from 11 to 33 years. The interventions evaluated were corticotomies to facilitate orthodontic space closure or alignment of an ectopic maxillary canine, with the effect of repeated surgical procedures assessed in one of these studies. The studies did not report directly on the primary outcome as prespecified in our protocol: duration of orthodontic treatment, number of visits during active treatment (scheduled and unscheduled) and duration of visits. The main outcome assessed within the trials was the rate of tooth movement, with periodontal effects assessed in one trial and pain assessed in one trial. A maximum of just three trials with small sample sizes were available for each comparison and outcome. We assessed all of the studies as being at unclear risk of bias.Tooth movement was found to be slightly quicker with surgically assisted orthodontics in comparison with conventional treatment over periods of one month (MD 0.61 mm; 95% CI 0.49 to 0.72; P value < 0.001) and three months (MD 2.03 mm, 95% CI 1.52 to 2.54; P value < 0.001). Our results and conclusions should be interpreted with caution given the small number of included studies. Information on adverse events was sought; however, no data were reported in the included studies. AUTHORS' CONCLUSIONS This review found that there is limited research concerning the effectiveness of surgical interventions to accelerate orthodontic treatment, with no studies directly assessing our prespecified primary outcome. The available evidence is of low quality, which indicates that further research is likely to change the estimate of the effect. Based on measured outcomes in the short-term, these procedures do appear to show promise as a means of accelerating tooth movement. It is therefore possible that these procedures may prove useful; however, further prospective research comprising assessment of the entirety of treatment with longer follow-up is required to confirm any possible benefit.