9 resultados para optimization under uncertainty

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern policy-making is increasingly influenced by different types of uncertainty. Political actors are supposed to behave differently under the context of uncertainty then in “usual” decision-making processes. Actors exchange information in order to convince other actors and decision-makers, to coordinate their lobbying activities and form coalitions, and to get information and learn on the substantive issue. The literature suggests that preference similarity, social trust, perceived power and functional interdependence are particularly important drivers of information exchange. We assume that social trust as well as being connected to scientific actors is more important under uncertainty than in a setting with less uncertainty. To investigate information exchange under uncertainty analyze the case of unconventional shale gas development in the UK from 2008 till 2014. Our study will rely on statistical analyses of survey data on a diverse set of actors dealing with shale gas development and regulation in the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the question of which factors drive the formation of policy preferences when there are remaining uncertainties about the causes and effects of the problem at stake. To answer this question we examine policy preferences reducing aquatic micropollutants, a specific case of water protection policy and different actor groups (e.g. state, science, target groups). Here, we contrast two types of policy preferences: a) preventive or source-directed policies, which mitigate pollution in order to avoid contact with water; and b) reactive or end-of-pipe policies, which filter water already contaminated by pollutants. In a second step, we analyze the drivers for actors’ policy preferences by focusing on three sets of explanations, i.e. participation, affectedness and international collaborations. The analysis of our survey data, qualitative interviews and regression analysis of the Swiss political elite show that participation in the policy-making process leads to knowledge exchange and reduces uncertainties about the policy problem, which promotes preferences for preventive policies. Likewise, actors who are affected by the consequences of micropollutants, such as consumer or environmental associations, opt for anticipatory policies. Interestingly, we find that uncertainties about the effectiveness of preventive policies can promote preferences for end-of-pipe policies. While preventive measures often rely on (uncertain) behavioral changes of target groups, reactive policies are more reliable when it comes to fulfilling defined policy goals. Finally, we find that in a transboundary water management context, actors with international collaborations prefer policies that produce immediate and reliable outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy shocks like the Fukushima accident can have important political consequences. This article examines their impact on collaboration patterns between collective actors in policy processes. It argues that external shocks create both behavioral uncertainty, meaning that actors do not know about other actors' preferences, and policy uncertainty on the choice and consequences of policy instruments. The context of uncertainty interacts with classical drivers of actor collaboration in policy processes. The analysis is based on a dataset comprising interview and survey data on political actors in two subsequent policy processes in Switzerland and Exponential Random Graph Models for network data. Results first show that under uncertainty, collaboration of actors in policy processes is less based on similar preferences than in stable contexts, but trust and knowledge of other actors are more important. Second, under uncertainty, scientific actors are not preferred collaboration partners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-objective optimization algorithms aim at finding Pareto-optimal solutions. Recovering Pareto fronts or Pareto sets from a limited number of function evaluations are challenging problems. A popular approach in the case of expensive-to-evaluate functions is to appeal to metamodels. Kriging has been shown efficient as a base for sequential multi-objective optimization, notably through infill sampling criteria balancing exploitation and exploration such as the Expected Hypervolume Improvement. Here we consider Kriging metamodels not only for selecting new points, but as a tool for estimating the whole Pareto front and quantifying how much uncertainty remains on it at any stage of Kriging-based multi-objective optimization algorithms. Our approach relies on the Gaussian process interpretation of Kriging, and bases upon conditional simulations. Using concepts from random set theory, we propose to adapt the Vorob’ev expectation and deviation to capture the variability of the set of non-dominated points. Numerical experiments illustrate the potential of the proposed workflow, and it is shown on examples how Gaussian process simulations and the estimated Vorob’ev deviation can be used to monitor the ability of Kriging-based multi-objective optimization algorithms to accurately learn the Pareto front.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decision strategies aim at enabling reasonable decisions in cases of uncertain policy decision problems which do not meet the conditions for applying standard decision theory. This paper focuses on decision strategies that account for uncertainties by deciding whether a proposed list of policy options should be accepted or revised (scope strategies) and whether to decide now or later (timing strategies). They can be used in participatory approaches to structure the decision process. As a basis, we propose to classify the broad range of uncertainties affecting policy decision problems along two dimensions, source of uncertainty (incomplete information, inherent indeterminacy and unreliable information) and location of uncertainty (information about policy options, outcomes and values). Decision strategies encompass multiple and vague criteria to be deliberated in application. As an example, we discuss which decision strategies may account for the uncertainties related to nutritive technologies that aim at reducing methane (CH4) emissions from ruminants as a means of mitigating climate change, limiting our discussion to published scientific information. These considerations not only speak in favour of revising rather than accepting the discussed list of options, but also in favour of active postponement or semi-closure of decision-making rather than closure or passive postponement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.