20 resultados para optical tweezers technique

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mesoscopic 3D imaging has become a widely used optical imaging technique to visualize intact biological specimens. Selective plane illumination microscopy (SPIM) visualizes samples up to a centimeter in size with micrometer resolution by 3D data stitching but is limited to fluorescent contrast. Optical projection tomography (OPT) works with fluorescent and nonfluorescent contrasts, but its resolution is limited in large samples. We present a hybrid setup (OPTiSPIM) combining the advantages of each technique. The combination of fluorescent and nonfluorescent high-resolution 3D data into integrated datasets enables a more extensive representation of mesoscopic biological samples. The modular concept of the OPTiSPIM facilitates incorporation of the transmission OPT modality into already established light sheet based imaging setups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To determine the practicability and accuracy of central corneal thickness (CCT) measurements in living chicks utilizing a noncontact, high-speed optical low-coherence reflectometer (OLCR) mounted on a slit lamp. ANIMALS STUDIED Twelve male chicks (Gallus gallus domesticus). Procedures  Measurements of CCT were obtained in triplicate in 24 eyes of twelve 1-day-old anaesthetized chicks using OLCR. Every single measurement taken by OLCR consisted of the average result of 20 scans obtained within seconds. Additionally, corneal thickness was determined histologically after immersion fixation in Karnovsky's solution alone (20 eyes) or with a previous injection of the fixative into the anterior chamber before enucleation (4 eyes). RESULTS Central corneal thickness measurements using OLCR in 1-day-old living chicks provide a rapid and feasible examination technique. Mean CCT measured with OLCR (189.7 ± 3.34 μm) was significantly lower than histological measurements (242.1 ± 47.27 μm) in eyes with fixation in Karnovsky's solution (P = 0.0005). In eyes with additional injection of Karnovsky's fixative into the anterior chamber, mean histologically determined CCT was 195.2 ± 8.25 μm vs. 191.9 ± 8.90 μm with OLCR. A trend for a lower variance was found compared to the eyes that had only been immersion fixed. CONCLUSION Optical low-coherence reflectometry is an accurate examination technique to measure in vivo CCT in the eye of newborn chicks. The knowledge of the thickness of the chick cornea and the ability to obtain noninvasive, noncontact measurements of CCT in the living animal may be of interest for research and development of eye diseases in chick models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioresorbable vascular scaffolds (BVS) present different mechanical properties as compared to metallic platform stents. Therefore, the standard procedural technique to achieve appropriate deployment may differ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In this paper, we present a new method for the calibration of a microscope and its registration using an active optical tracker. METHODS: Practically, both operations are done simultaneously by moving an active optical marker within the field of view of the two devices. The IR LEDs composing the marker are first segmented from the microscope images. By knowing their corresponding three-dimensional (3D) position in the optical tracker reference system, it is possible to find the transformation matrix between the referential of the two devices. Registration and calibration parameters can be extracted directly from that transformation. In addition, since the zoom and focus can be modified by the surgeon during the operation, we propose a spline based method to update the camera model to the new setup. RESULTS: The proposed technique is currently being used in an augmented reality system for image-guided surgery in the fields of ear, nose and throat (ENT) and craniomaxillofacial surgeries. CONCLUSIONS: The results have proved to be accurate and the technique is a fast, dynamic and reliable way to calibrate and register the two devices in an OR environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doppler Optical Coherence Tomography (DOCT) is a biomedical imaging technique that allows simultaneous structural imaging and flow monitoring inside biological tissues and materials with spatial resolution in the micrometer scale. It has recently been applied to the characterization of microfluidic systems. Structural and flow imaging of novel microfluidics platforms for cytotoxicologic applications were obtained with a real-time, Near Infrared Spectral Domain DOCT system. Characteristics such as flow homogeneity in the chamber, which is one of the most important parameters for cell culture, are investigated. OCT and DOCT images were used to monitor flow inside a specific platform that is based on microchannel division for a better flow homogeneity. In particular, the evolution of flow profile at the transition between the microchannel structure and the chamber is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of the specular reflection intensity was previously reported for the quantification of early dental erosion. Further development of the technique and assembly of the miniaturized pen-size instrument are described. The optical system was adjusted to fit into a handy device which could potentially access different positions in the oral cavity. The assembled instrument could successfully detect early erosion progression in both polished (n=70) and native (n=20) human enamels. Different severities of enamel erosion were induced by varying incubation time of polished enamel in 1% citric acid (pH=3.60, 0.5 to 10 min), while the native incisors were treated in the commercial orange juice (Tropicana Pure Premium®, pH=3.85, 10 to 60 min). The instrument provided a good differentiation between various severities of the erosion in vitro. The size of the measurement spot affected the erosion monitoring in native enamel (human incisors). The erosion measurement in the 0.7-mm (diameter) cervical spots showed systematically lower reflection intensities compared with the analysis of central and incisal small spots. The application of larger spot areas (2.3 mm) for the erosion monitoring revealed no effect (p>0.05) of the spot position on the reflection signal. High variation of the teeth susceptibility toward in vitro erosion was detected in native enamel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Application of the recently developed optical method based on the monitoring of the specular reflection intensity to study the protective potential of the salivary pellicle layer against early enamel erosion. METHODS The erosion progression was compared between two treatment groups: enamel samples coated by the 15 h-in vitro-formed salivary pellicle layer (group P, n=90) and the non-coated enamel surfaces (control group C, n=90). Different severity of the erosive impact was modelled by the enamel incubation in 1% citric acid (pH=3.6) for 2, 4, 8, 10 or 15 min. Erosion quantification was performed by the optical method as well as by the microhardness and calcium release analyses. RESULTS Optical assessment of the erosion progression showed erosion inhibition by the in vitro salivary pellicle in short term acidic treatments (≤ 4 min) which was also confirmed by microhardness measurements proving significantly less (p<0.05) enamel softening in the group P at 2 and 4 min of erosion compared to the group C. SEM images demonstrated less etched enamel interfaces in the group P at short erosion durations as well. CONCLUSIONS Monitoring of the specular reflection intensity can be successfully applied to quantify early erosion progression in comparative studies. In vitro salivary pellicle (2h) provides erosion inhibition but only in short term acidic exposures. CLINICAL SIGNIFICANCE The proposed optical technique is a promising tool for the fast and non-invasive erosion quantification in clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When drilling ice cores deeper than ∼100 m, drill liquid is required to maintain ice-core quality and to limit borehole closure. Due to high-pressure air bubbles in the ice, the ice core can crack during drilling and core retrieval, typically at 600–1200 m depth in Greenland. Ice from this 'brittle zone' can be contaminated by drill liquid as it seeps through cracks into the core. Continuous flow analysis (CFA) systems are routinely used to analyse ice for chemical impurities, so the detection of drill liquid is important for validating accurate measurements and avoiding potential instrument damage. An optical detector was constructed to identify drill liquid in CFA tubing by ultraviolet absorption spectroscopy at a wavelength of 290 nm. The set-up was successfully field-tested in the frame of the NEEM ice-core drilling project in Greenland. A total of 27 cases of drill liquid contamination were identified during the analysis of 175 m of brittle zone ice. The analyses most strongly affected by drill liquid contamination include insoluble dust particles, electrolytic conductivity, ammonium, hydrogen peroxide and sulphate. This method may also be applied to other types of drill liquid used at other drill sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE The Short Communication presents a clinical case in which a novel procedure--the "Individualized Scanbody Technique" (IST)--was applied, starting with an intraoral digital impression and using CAD/CAM process for fabrication of ceramic reconstructions in bone level implants. MATERIAL AND METHODS A standardized scanbody was individually modified in accordance with the created emergence profile of the provisional implant-supported restoration. Due to the specific adaptation of the scanbody, the conditioned supra-implant soft tissue complex was stabilized for the intraoral optical scan process. Then, the implant platform position and the supra-implant mucosa outline were transferred into the three-dimensional data set with a digital impression system. Within the technical workflow, the ZrO2 -implant-abutment substructure could be designed virtually with predictable margins of the supra-implant mucosa. RESULTS After finalization of the 1-piece screw-retained full ceramic implant crown, the restoration demonstrated an appealing treatment outcome with harmonious soft tissue architecture. CONCLUSIONS The IST facilitates a simple and fast approach for a supra-implant mucosal outline transfer in the digital workflow. Moreover, the IST closes the interfaces in the full digital pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The direct Bayesian admissible region approach is an a priori state free measurement association and initial orbit determination technique for optical tracks. In this paper, we test a hybrid approach that appends a least squares estimator to the direct Bayesian method on measurements taken at the Zimmerwald Observatory of the Astronomical Institute at the University of Bern. Over half of the association pairs agreed with conventional geometric track correlation and least squares techniques. The remaining pairs cast light on the fundamental limits of conducting tracklet association based solely on dynamical and geometrical information.