3 resultados para off-road vehicles (ORVs)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.
Resumo:
We evaluated 4 men who had benign paroxysmal positional vertigo (BPPV) that occured several hours after intensive mountain biking but without head trauma. The positional maneuvers in the planes of the posterior and horizontal canals elicited BPPV, as well as transitory nystagmus. This was attributed to both the posterior and horizontal semicircular canals (SCCs) on the left side in 1 patient, in these 2 SCCs on the right side in another patient, and to the right posterior SCC in the other 2 patients. The symptoms disappeared after physiotherapeutic maneuvers in 2 patients and spontaneously in the other 2 patients. Cross-country or downhill mountain biking generates frequent vibratory impacts, which are only partially filtered through the suspension fork and the upper parts of the body. Biomechanically, during a moderate jump, before landing, the head is subjected to an acceleration close to negative 1 g, and during impact it is subjected to an upward acceleration of more than 2g. Repeated acceleration-deceleration events during intensive off-road biking might generate displacement and/or dislocation of otoconia from the otolithic organs, inducing the typical symptoms of BPPV. This new cause of posttraumatic BPPV should be considered as an injury of minor severity attributed to the practice of mountain biking.
Resumo:
PRINCIPALS Over a million people worldwide die each year from road traffic injuries and more than 10 million sustain permanent disabilities. Many of these victims are pedestrians. The present retrospective study analyzes the severity and mortality of injuries suffered by adult pedestrians, depending on whether they used a zebra crosswalk. METHODS Our retrospective data analysis covered adult patients admitted to our emergency department (ED) between 1 January 2000 and 31 December 2012 after being hit by a vehicle while crossing the road as a pedestrian. Patients were identified by using a string term. Medical, police and ambulance records were reviewed for data extraction. RESULTS A total of 347 patients were eligible for study inclusion. Two hundred and three (203; 58.5%) patients were on a zebra crosswalk and 144 (41.5%) were not. The mean ISS (injury Severity Score) was 12.1 (SD 14.7, range 1-75). The vehicles were faster in non-zebra crosswalk accidents (47.7 km/n, versus 41.4 km/h, p<0.027). The mean ISS score was higher in patients with non-zebra crosswalk accidents; 14.4 (SD 16.5, range 1-75) versus 10.5 (SD13.14, range 1-75) (p<0.019). Zebra crosswalk accidents were associated with less risk of severe injury (OR 0.61, 95% CI 0.38-0.98, p<0.042). Accidents involving a truck were associated with increased risk of severe injury (OR 3.53, 95%CI 1.21-10.26, p<0.02). CONCLUSION Accidents on zebra crosswalks are more common than those not on zebra crosswalks. The injury severity of non-zebra crosswalk accidents is significantly higher than in patients with zebra crosswalk accidents. Accidents involving large vehicles are associated with increased risk of severe injury. Further prospective studies are needed, with detailed assessment of motor vehicle types and speed.