5 resultados para oddball
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: To develop risk-adapted prevention of psychosis, an accurate estimation of the individual risk of psychosis at a given time is needed. Inclusion of biological parameters into multilevel prediction models is thought to improve predictive accuracy of models on the basis of clinical variables. To this aim, mismatch negativity (MMN) was investigated in a sample clinically at high risk, comparing individuals with and without subsequent conversion to psychosis. METHODS: At baseline, an auditory oddball paradigm was used in 62 subjects meeting criteria of a late risk at-state who remained antipsychotic-naive throughout the study. Median follow-up period was 32 months (minimum of 24 months in nonconverters, n = 37). Repeated-measures analysis of covariance was employed to analyze the MMN recorded at frontocentral electrodes; additional comparisons with healthy controls (HC, n = 67) and first-episode schizophrenia patients (FES, n = 33) were performed. Predictive value was evaluated by a Cox regression model. RESULTS: Compared with nonconverters, duration MMN in converters (n = 25) showed significantly reduced amplitudes across the six frontocentral electrodes; the same applied in comparison with HC, but not FES, whereas the duration MMN in in nonconverters was comparable to HC and larger than in FES. A prognostic score was calculated based on a Cox regression model and stratified into two risk classes, which showed significantly different survival curves. CONCLUSIONS: Our findings demonstrate the duration MMN is significantly reduced in at-risk subjects converting to first-episode psychosis compared with nonconverters and may contribute not only to the prediction of conversion but also to a more individualized risk estimation and thus risk-adapted prevention.
Resumo:
Event-related potentials (ERPs) were used to trace changes in brain activity related to progress in second language learning. Twelve English-speaking exchange students learning German in Switzerland were recruited. ERPs to visually presented single words from the subjects' native language (English), second language (German) and an unknown language (Romansh) were measured before (day 1) and after (day 2) 5 months of intense German language learning. When comparing ERPs to German words from day 1 and day 2, we found topographic differences between 396 and 540 ms. These differences could be interpreted as a latency shift indicating faster processing of German words on day 2. Source analysis indicated that the topographic differences were accounted for by shorter activation of left inferior frontal gyrus (IFG) on day 2. In ERPs to English words, we found Global Field Power differences between 472 and 644 ms. This may due to memory traces related to English words being less easily activated on day 2. Alternatively, it might reflect the fact that--with German words becoming familiar on day 2--English words loose their oddball character and thus produce a weaker P300-like effect on day 2. In ERPs to Romansh words, no differences were observed. Our results reflect plasticity in the neuronal networks underlying second language acquisition. They indicate that with a higher level of second language proficiency, second language word processing is faster and requires shorter frontal activation. Thus, our results suggest that the reduced IFG activation found in previous fMRI studies might not reflect a generally lower activation but rather a shorter duration of activity.
Resumo:
P300 is an event-related potential that is elicited by an oddball paradigm. In several neuropsychiatric diseases, differences in latencies and amplitude compared to healthy subjects have been reported. Because of its clinical significance, several investigations have tried to elucidate the intracranial origins of the P300 component. In the present study we could demonstrate a network of P300 generators. Investigated were 15 healthy subjects with an acoustical oddball paradigm within a fMRI block design, which enabled us to exclude attention or acoustical processing effects. The inferior and middle frontal, superior temporal, lower parietal cortex, the insula and the anterior cingulum were significantly activated symmetrical in both hemispheres.
Resumo:
Nondemented Parkinson’s disease (PD) patients showed increased amplitude of event-related potential component P3. We recorded 18-channel spontaneous eyes-closed resting EEG and auditory oddball event-related potentials in 29 PD patients and 11 age-matched controls. Combining Mini-Mental State Examination score and oddball P3 counting performance, 15 patients were intellectually normal, 7 moderately, and 7 severely demented. P3 and N1 amplitude and latency, mean amplitude of 1,024 ms post-stimulus (separate after rare and after frequent stimuli), and resting EEG total power for 40 s were computed, and linearly regressed for age, sex, and L-dopa dosage. In nondemented PD patients, increased P3 amplitude was confirmed, but N1 amplitude and mean amplitude after rare and frequent stimuli were also increased as well as – most important – resting EEG total power. With increasing dementia, amplitude and power decreased, and P3 latency increased. Task demands cannot explain increased P3 amplitude, since similarly increased EEG total power was found during no-task resting. Prospective studies must determine whether P3 amplitude and EEG power in nondemented PD patients can serve as predictors of dementia.
Resumo:
BACKGROUND: There is converging evidence for the notion that pain affects a broad range of attentional domains. This study investigated the influence of pain on the involuntary capture of attention as indexed by the P3a component in the event-related potential derived from the electroencephalogram. METHODS: Participants performed in an auditory oddball task in a pain-free and a pain condition during which they submerged a hand in cold water. Novel, infrequent and unexpected auditory stimuli were presented randomly in a series of frequent standard and infrequent target tones. P3a and P3b amplitudes were observed to novel, unexpected and target-related stimuli, respectively. RESULTS: Both electrophysiological components were characterized by reduced amplitudes in the pain compared with the pain-free condition. Hit rate and reaction time to target stimuli did not differ between the two conditions presumably because the experimental task was not difficult enough to exceed attentional capacities under pain conditions. CONCLUSIONS: These results indicate that voluntary attention serving the maintenance and control of ongoing information processing (reflected by the P3b amplitude) is impaired by pain. In addition, the involuntary capture of attention and orientation to novel, unexpected information (measured by the P3a) is also impaired by pain. Thus, neurophysiological measures examined in this study support the theoretical positions proposing that pain can reduce attentional processing capacity. These findings have potentially important implications at the theoretical level for our understanding of the interplay of pain and cognition, and at the therapeutic level for the clinical treatment of individuals experiencing ongoing pain.