90 resultados para nuclear activated factor of T-cells

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Autografts are used for bone reconstruction in regenerative medicine including oral and maxillofacial surgery. Bone grafts release paracrine signals that can reach mesenchymal cells at defect sites. The impact of the paracrine signals on osteogenic, adipogenic, and chondrogenic differentiation of mesenchymal cells has remained unclear. MATERIAL AND METHODS Osteogenesis, adipogenesis, and chondrogenesis were studied with murine ST2 osteoblast progenitors, 3T3-L1 preadipocytes, and ATDC5 prechondrogenic cells, respectively. Primary periodontal fibroblasts from the gingiva, from the periodontal ligament, and from bone were also included in the analysis. Cells were exposed to bone-conditioned medium (BCM) that was prepared from porcine cortical bone chips. RESULTS BCM inhibited osteogenic and adipogenic differentiation of ST2 and 3T3-L1 cells, respectively, as shown by histological staining and gene expression. No substantial changes in the expression of chondrogenic genes were observed in ATDC5 cells. Primary periodontal fibroblasts also showed a robust decrease in alkaline phosphatase and peroxisome proliferator-activated receptor gamma (PPARγ) expression when exposed to BCM. BCM also increased collagen type 10 expression. Pharmacologic blocking of transforming growth factor (TGF)-β receptor type I kinase with SB431542 and the smad-3 inhibitor SIS3 at least partially reversed the effect of BCM on PPARγ and collagen type 10 expression. In support of BCM having TGF-β activity, the respective target genes were increasingly expressed in periodontal fibroblasts. CONCLUSIONS The present work is a pioneer study on the paracrine activity of bone grafts. The findings suggest that cortical bone chips release soluble signals that can modulate differentiation of mesenchymal cells in vitro at least partially involving TGF-β signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cell proliferation and survival and is frequently activated by genetic and epigenetic alterations in human cancer. An arsenal of pharmacological inhibitors of key signaling enzymes in this pathway, including class I(A) PI3K isoforms, has been developed in the past decade and several compounds have entered clinical testing in cancer patients. The PIK3CA/p110α isoform is the most studied enzyme of the family and a validated cancer target. The induction of autophagy by PI3K pathway inhibitors has been documented in various cancers, although a clear picture about the significance of this phenomenon is still missing, especially in the in vivo situation. A better understanding of the contribution of autophagy to the action of PI3K inhibitors on tumors cells is important, since it may limit or enhance the action of these compounds, depending on the cellular context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides are intrinsic to the innate immune system in many organ systems, but little is known about their expression in the central nervous system. We examined cerebrospinal fluid (CSF) and serum from patients with active bacterial meningitis to assess antimicrobial peptides and possible bactericidal properties of the CSF. We found antimicrobial peptides (human cathelicidin LL-37) in the CSF of patients with bacterial meningitis but not in control CSF. We next characterized the expression, secretion, and bactericidal properties of rat cathelin-related antimicrobial peptide, the homologue of the human LL-37, in rat astrocytes and microglia after incubation with different bacterial components. Using real-time polymerase chain reaction and Western blotting, we determined that supernatants from both astrocytes and microglia incubated with bacterial component supernatants had antimicrobial activity. The expression of rat cathelin-related antimicrobial peptide in rat glial cells involved different signal transduction pathways and was induced by the inflammatory cytokines interleukin 1beta and tumor necrosis factor. In an experimental model of meningitis, infant rats were intracisternally infected with Streptococcus pneumoniae, and rat cathelin-related antimicrobial peptide was localized in glia, choroid plexus, and ependymal cells by immunohistochemistry. Together, these results suggest that cathelicidins produced by glia and other cells play an important part in the innate immune response against pathogens in central nervous system bacterial infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The BH3-only protein Bim is a critical initiator of apoptosis in hematopoietic cells. Bim is upregulated in response to growth factor withdrawal and in vitro studies have implicated the transcription factor Foxo3a as a critical inducer. To test the importance of this regulation in vivo, we generated mice with mutated Foxo-binding sites within the Bim promoters (Bim(ΔFoxo/ΔFoxo)). Contrary to Bim-deficient mice, Bim(ΔFoxo/ΔFoxo) mice had a normal hematopoietic system. Moreover, cytokine-dependent haematopoietic cells from Bim(ΔFoxo/ΔFoxo) and wt mice died at similar rates. These results indicate that regulation of Bim by Foxo transcription factors is not critical for the killing of hematopoietic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To describe the presence and amount of apoptotic ligamentous cells in different areas of partially ruptured canine cranial cruciate ligaments (prCCLs) and to compare these findings with apoptosis of ligamentous cells in totally ruptured cranial cruciate ligaments (trCCLs). ANIMALS 20 dogs with prCCLs and 14 dogs with trCCLs. PROCEDURES Dogs with prCCLs or trCCLs were admitted to the veterinary hospital for stifle joint treatment. Biopsy specimens of the intact area of prCCLs (group A) and the ruptured area of prCCLs (group B) as well as specimens from trCCLs (group C) were harvested during arthroscopy. Caspase-3 and poly (ADP-ribose) polymerase (PARP) detection were used to detect apoptotic ligamentous cells by immunohistochemistry. RESULTS No difference was found in the degree of synovitis or osteophytosis between prCCLs and trCCLs. No difference was found in degenerative changes in ligaments between groups A and B. A substantial amount of apoptotic cells could be found in > 90% of all stained slides. A correlation (r(s) = 0.71) was found between the number of caspase-3-and PARP-positive cells. No significant difference was found in the amount of apoptotic cells among the 3 groups. No significant correlation could be detected between the degree of synovitis and apoptotic cells or osteophyte production and apoptotic cells. CONCLUSIONS AND CLINICAL RELEVANCE The lack of difference between the 3 groups indicates that apoptosis could be a factor in the internal disease process leading to CCL rupture and is not primarily a consequence of the acute rupture of the ligament.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Notochordal cells (NC) are shifted back into focus due to their apparent action of activating other disc cells via indirect release of yet unknown factors into the medium (conditioned medium = CM).1,2 Recent evidence confirms the results from the late 1990s.3,4 Here, we test porcine (p) NC cultured in 3D and the influence of adding serum or using serum-free medium onto the culture on NC cells and its stimulating effects for subsequent coculture with primary bovine (b) nucleus pulposus (bNPC) and annulus fibrous cells (bAFC). Materials and Methods Primary pNC, bNPC, and bAFC were isolated from porcine tails (< 6-12 months age) or bovine tails (∼1 year age), which were obtained from the food chain (N = 4 repeats) within 4 hours postmortem. All cells were seeded into 1.2% alginate, each with a density of 4 × 106/mL. NC were then either cultured for 7 days in serum free medium (SFM = Dulbecco modified eagle medium [DMEM] supplied with ITS+, 50 µg/mL vitamin C and nonessential amino acids) or DMEM + 10% fetal calf serum (FCS). CM was produced from NC collecting 4 mL SFM and keeping approximately 30 beads for 7 days. Then, a coculture was set up in SFM for 14 days using indirect cell-cell contact (culture insert, high density pore, 0.4 µm) using a 50:50% ratio5 of pNC:bNP or bAF, or by addition of CM, respectively. The cell activity, glycosaminoglycan per DNA (GAG/DNA) ratio, and real-time RT-PCR of IVD relevant genes were monitored. Mass spectrometry was performed on the SFM and the cocultured medium as well as the CM of the pNC to identify possible key cytokines to the stimulatory effects. Results The results for cell activity confirmed that pNC are highly responsive on the nutritional condition in the culture (K-W test, p = 0.048) after 7 days of coculture. bNPC and bAFC did not respond significantly different to coculture or addition of CM with respect to cell activity. However, GAG/DNA ratio of pNC was significantly upregulated if they were initially pre-exposed to FCS and in coculture with bNPC after 14 days, for both normoxia and hypoxia (K-W, p = 0.03). The bNPC were stimulated by both, 1:1 coculture with pNC but also by addition of CM only, which resulted in approximately 200% increased GAG/DNA values relative to the day 0 state. However, this doubling of the GAG/DNA ratio was nonsignificant after 14 days. The aggrecan/collagen type 2 ratio as quantified from real-time RT-PCR pointed to a beneficial state of the bNPC if cultured either in indirect coculture with pNC or by the addition of CM (Fig. 1). The mass spectrometric analysis of the CM revealed that there was connecting tissue growth factor present (CTGF) among the cytokine CLC11, a cytokine that has been found to be expressed in skeletal tissues including bone marrow and chondrocytes among other factors that might have immunoregulatory and cell proliferative functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postnatally, the mammary gland undergoes continuous morphogenesis and thereby is especially prone to malignant transformation. Thus, the maintenance of the epithelium depends on a tight control of stem cell recruitment. We have previously shown that epithelial overexpression of the EphB4 receptor results in defective mammary epithelial development and conferred a metastasizing tumor phenotype on experimental mouse mammary tumors accompanied by a preponderance of progenitor cells. To analyze the effect of EphB4 overexpression on mammary epithelial cell fate, we have used Fluorescence Activated Cell Sorting (FACS) analyses to quantify epithelial sub-populations and repopulation assays of cleared fat pads to investigate their regenerative potential. These experiments revealed that deregulated EphB4 expression leads to an augmentation of bi-potent progenitor cells and to a shift of the differentiation pathway towards the luminal lineage. The analyses of the ductal outgrowths indicated that EphB4 overexpression leads to enforced branching activity, impedes ductal differentiation and stimulates angiogenesis. To elucidate the mechanisms forwarding EphB4 signals, we have compared the expression profile of defined cell populations between EphB4 transgene and wild type mammary glands concentrating on the wnt signaling pathway and on genes implicated in cell migration. With respect to wnt signaling, the progenitor cell population was the most affected, whereas the stem cell-enriched population showed the most pronounced deregulation of migration-associated genes. Thus, the luminal epithelial EphB4 signaling contributes, most likely via wnt signaling, to the regulation of migration and cell fate of early progenitors and is involved in the determination of branching points along the ductal tree.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There is evidence that tumour-stroma interactions have a major role in the neoplastic progression of pancreatic ductal adenocarcinoma (PDAC). Tumour budding is thought to reflect the process of epithelial-mesenchymal transition (EMT); however, the relationship between tumour buds and EMT remains unclear. Here we characterize the tumour-budding- and stromal cells in PDAC at protein and mRNA levels concerning factors involved in EMT. METHODS mRNA in situ hybridisation and immunostaining for E-cadherin, β-catenin, SNAIL1, ZEB1, ZEB2, N-cadherin and TWIST1 were assessed in the main tumour, tumour buds and tumour stroma on multipunch tissue microarrays from 120 well-characterised PDACs and associated with the clinicopathological features, including peritumoural (PTB) and intratumoural (ITB) budding. RESULTS Tumour-budding cells showed increased levels of ZEB1 (P<0.0001) and ZEB2 (P=0.0119) and reduced E-cadherin and β-catenin (P<0.0001, each) compared with the main tumour. Loss of membranous β-catenin in the main tumour (P=0.0009) and tumour buds (P=0.0053), without nuclear translocation, as well as increased SNAIL1 in tumour and stromal cells (P=0.0002, each) correlated with high PTB. ZEB1 overexpression in the main tumour-budding and stromal cells was associated with high ITB (P=0.0084; 0.0250 and 0.0029, respectively) and high PTB (P=0.0005; 0.0392 and 0.0007, respectively). ZEB2 overexpression in stromal cells correlated with higher pT stage (P=0.03), lymphatic invasion (P=0.0172) and lymph node metastasis (P=0.0152). CONCLUSIONS In the tumour microenvironment of phenotypically aggressive PDAC, tumour-budding cells express EMT hallmarks at protein and mRNA levels underlining their EMT-type character and are surrounded by stromal cells expressing high levels of the E-cadherin repressors ZEB1, ZEB2 and SNAIL1, this being strongly associated with the tumour-budding phenotype. Moreover, our findings suggest the existence of subtypes of stromal cells in PDAC with phenotypical and functional heterogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AIMS The diverse phenotypic changes and clinical and economic disadvantages associated with the monolayer expansion of bone marrow-derived mesenchymal stromal cells (MSCs) have focused attention on the development of one-step intraoperative cells therapies and homing strategies. The mononuclear cell fraction of bone marrow, inclusive of discrete stem cell populations, is not well characterized, and we currently lack suitable cell culture systems in which to culture and investigate the behavior of these cells. METHODS Human bone marrow-derived mononuclear cells were cultured within fibrin for 2 weeks with or without fibroblast growth factor-2 supplementation. DNA content and cell viability of enzymatically retrieved cells were determined at days 7 and 14. Cell surface marker profiling and cell cycle analysis were performed by means of multi-color flow cytometry and a 5-ethynyl-2'-deoxyuridine incorporation assay, respectively. RESULTS Total mononuclear cell fractions, isolated from whole human bone marrow, was successfully cultured in fibrin gels for up to 14 days under static conditions. Discrete niche cell populations including MSCs, pericytes and hematopoietic stem cells were maintained in relative quiescence for 7 days in proportions similar to that in freshly isolated cells. Colony-forming unit efficiency of enzymatically retrieved MSCs was significantly higher at day 14 compared to day 0; and in accordance with previously published works, it was fibroblast growth factor-2-dependant. CONCLUSIONS Fibrin gels provide a simple, novel system in which to culture and study the complete fraction of bone marrow-derived mononuclear cells and may support the development of improved bone marrow cell-based therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND During pregnancy, many patients with rheumatoid arthritis (RA) experience disease improvement, whereas patients with ankylosing spondylitis often suffer from persistent active disease. Here we investigated whether pregnancy-related changes in disease activity were associated with changes in the proportion and function of γδT cells. METHODS The study population comprised 55 patients with RA, 31 patients with ankylosing spondylitis, and 35 healthy controls. Among these participants, 28 RA patients, 21 ankylosing spondylitis patients, and 23 healthy controls were investigated once before conception when possible, at each trimester of pregnancy, and at 8 weeks postpartum. Data were compared with age-matched non-pregnant patients to obtain disease-related background. In all subjects, peripheral Vδ1 and Vδ2 T cells were analyzed for cell frequencies, the activation marker CD69, the cytotoxicity markers NKG2D and NKG2A, and the intracellular cytokines tumor necrosis factor (TNF)α, interferon (IFN)γ, interleukin (IL)-17 and IL-10. RESULTS Pregnant patients showed a decreased Vδ2/Vδ1 ratio in the third trimester, which resulted from a slightly reduced proportion of Vδ2 cells. Changes in RA disease activity during pregnancy and postpartum were not associated with numerical proportions of γδT cells but with changes of the cell activation marker CD69 on Vδ1 and Vδ2 cells. Only RA patients showed reduced proportions of TNFα-positive Vδ1and Vδ2 cells and IFNγ-positive Vδ2 cells at the third trimester of pregnancy, a finding that was not apparent in the entire population of CD3 T cells. The proportions of IL-17-positive γδT cells and IL-10-positive γδT cells did not differ between pregnant and non-pregnant women of the different groups. CONCLUSIONS Changes of disease activity in pregnant RA patients were associated with functional changes in both γδT cell subsets. This reduced pro-inflammatory profile of γδT cells might contribute to the immunomodulation resulting in pregnancy-induced improvement of RA.