93 resultados para normal human

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By targeting somatostatin receptors (sst) radiopeptides have been established for both diagnosis and therapy. For physiologically normal human tissues the study provides a normative database of maximum standardized uptake value (SUV(max)) and sst mRNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The previously described c655G>A mutation of the human cytochrome P450 aromatase gene (P450aro, CYP19) results in aberrant splicing due to disruption of a donor splice site. To explain the phenotype of partial aromatase deficiency observed in a female patient described with this mutation, molecular consequences of the c655G>A mutation were investigated. DESIGN: To investigate whether the c655G>A mutation causes an aberrant spliced mRNA lacking exon 5 (-Ex5), P450aro RNA was analysed from the patient's lymphocytes by reverse transcription polymerase chain reaction (RT-PCR) and by splicing assays performed in Y1 cells transfected with a P450aro -Ex5 expression vector. Aromatase activity of the c655G>A mutant was predicted by three dimensional (3D) protein modelling studies and analysed in transiently transfected Y1 cells. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to both splicing mutations and physiological alternative splicing events. Therefore, expression of the -Ex5 mRNA was also assessed as a possibly naturally occurring alternative splicing transcript in normal human steroidogenic tissues. PATIENTS: An aromatase deficient girl was born with ambiguous genitalia. Elevated serum LH, FSH and androgens, as well as cystic ovaries, were found during prepuberty. At the age of 8.4 years, spontaneous breast development and a 194.6 pmol/l serum oestradiol level was observed. RESULTS: The -Ex5 mRNA was found in lymphocytes of the P450aro deficient girl and her father, who was a carrier of the mutation. Mutant minigene expression resulted in complete exon 5 skipping. As expected from 3D protein modelling, -Ex5 cDNA expression in Y1 cells resulted in loss of P450aro activity. In addition, the -Ex5 mRNA was present in placenta, prepubertal testis and adrenal tissues. CONCLUSIONS: Alternative splicing of exon 5 of the CYP19 gene occurs in the wild type (WT) as well as in the c655G>A mutant. We speculate that for the WT it might function as a regulatory mechanism for aromatization, whereas for the mutant a relative prevalence of the shorter over the full-length protein might explain the phenotype of partial aromatase deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Natural xenoreactive antibodies (Abs) directed against the Bdi-epitope (Gal alpha 1-3Gal beta) on the cells of non-primate mammals take part in hyperacute rejection of xenotransplanted organs. We found that some Abs, which were one-step affinity purified on Bdi-Sepharose, cross-reacted with the disaccharide Gal alpha 1-4GlcNAc beta. The epitope Gal alpha 1-4GlcNAc has not been identified on mammals or bacterial polysaccharides yet. METHODS: To isolate the antibodies of the corresponding specificity the disaccharide was immobilized on Sepharose and antibodies were affinity purified from pooled serum of blood group O individuals. RESULTS: These one-step purified Abs cross-reacted with Bdi, but after a prior absorption step on Bdi-Sepharose no cross-reactivity with Bdi was observed any longer. Surprisingly, the quantity of anti-Gal alpha 1-4GlcNAc isolated from the same serum pool, 4-7 microg/ml, was equal to that of anti-Bdi or more. Independently of ABO blood groups all the tested healthy donors had anti-Gal alpha 1-4GlcNAc Abs at a similar level. Monospecific anti-Gal alpha 1-4GlcNAc Abs were not cytotoxic towards porcine cells. CONCLUSIONS: 1. The actual concentration of monospecific, xenoreactive Gal alpha 1-3Gal beta Abs in blood may be considerably lower than the value referred to in the literature for 'anti-alpha Gal' or 'anti-Galili' antibodies. 2. Anti-Gal alpha 1-4GlcNAc Abs seem not to be important for xenotransplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperkalemia is an important cause of membrane depolarization in renal failure. A recent theoretical model of axonal excitability explains the effects of potassium on threshold electrotonus, but predicts changes in superexcitability in the opposite direction to those observed. To resolve this contradiction we assessed the relationship between serum potassium and motor axon excitability properties in 38 volunteers with normal potassium levels. Most threshold electrotonus measures were strongly correlated with potassium, and superexcitability decreased at higher potassium levels (P = 0.016), contrary to the existing model. Improved modelling of potassium effects was achieved by making the potassium currents obey the constant-field theory, and by making the potassium permeabilities proportional to external potassium, as has been observed in vitro. This new model also accounted well for the changes in superexcitability and other excitability measures previously reported in renal failure. These results demonstrate the importance of taking potassium levels into account when assessing axonal membrane dysfunction by excitability testing, and provide evidence that potassium currents are activated by external potassium in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Normal human serum (NHS) confers human resistance to infection by the parasite Trypanosoma brucei owing to the trypanolytic activity of apolipoprotein L1 (APOL1), present in two serum complexes termed Trypanolytic Factors (TLF-1 and -2). In order to identify parasite components involved in the intracellular trafficking and activity of TLFs, an inducible RNA interference (RNAi) genomic DNA library constructed in bloodstream form T. brucei was subjected to RNAi induction and selection for resistant parasites under NHS conditions favouring either TLF-1 or TLF-2 uptake. While TLF-1 conditions readily selected the haptoglobin-haemoglobin (HP-HB) surface receptor TbHpHbR as expected, given its known ability to bind TLF-1, under TLF-2 conditions no specific receptor for TLF-2 was identified. Instead, the screen allowed the identification of five distinct factors expected to be involved in the assembly of the vacuolar proton pump V-ATPase and consecutive endosomal acidification. These data confirm that lowering the pH during endocytosis is required for APOL1 toxic activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

NPY receptors represent novel molecular therapeutic targets in cancer and obesity. However, the extent of NPY receptor expression in normal human tissues is poorly investigated. Based on the role of NPY in reproductive functions, the NPY receptor expression was studied in 25 normal human testes and, additionally, 24 testicular tumors using NPY receptor autoradiography. In the normal testis, Leydig cells strongly expressed NPY receptor subtype Y2, and small arterial blood vessels Y1. Y2 receptors were found to be functional with agonist-stimulated [(35)S]GTPγS binding autoradiography. Full functional integrity of the NPY system was further suggested by the immunohistochemical detection of NPY peptide in nerve fibers directly adjacent to Leydig cells and arteries. Germ cell tumors expressed Y1 and Y2 on tumor cells in 33% and Y1 on intratumoral blood vessels in 50%. Based on its strong NPY receptor expression in Leydig cells and blood vessels, the normal human testis represents a potentially important physiological and pharmalogical NPY target.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hypermutations in hepatitis B virus (HBV) DNA by APOBEC3 cytidine deaminases have been detected in vitro and in vivo, and APOBEC3G (A3G) and APOBEC3F (A3F) have been shown to inhibit the replication of HBV in vitro, but the presumably low or even absent hepatic expression of these enzymes has raised the question as to their physiological impact on HBV replication. We show that normal human liver expresses the mRNAs of APOBEC3B (A3B), APOBEC3C (A3C), A3F, and A3G. In primary human hepatocytes, interferon alpha (IFN-alpha) stimulated the expression of these cytidine deaminases up to 14-fold, and the mRNAs of A3G, A3F, and A3B reached expression levels of 10%, 3%, and 3%, respectively, relative to GAPDH mRNA abundance. On transfection, the full-length protein A3B(L) inhibited HBV replication in vitro as efficiently as A3G or A3F, whereas the truncated splice variant A3B(S) and A3C had no effect. A3B(L) and A3B(S) were detected predominantly in the nucleus of uninfected cells; however, in HBV-expressing cells both proteins were found also in the cytoplasm and were associated with HBV viral particles, similarly to A3G and A3F. Moreover, A3G, A3F, and A3B(L), but not A3B(S), induced extensive G-to-A hypermutations in a fraction of the replicated HBV genomes. In conclusion, the editing enzymes A3B(L), A3F, and most markedly A3G, which are expressed in liver and up-regulated by IFN-alpha in hepatocytes, are candidates to contribute to the noncytolytic clearance of HBV.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Telomeres and telomerase play essential roles in the regulation of the lifespan of human cells. While normal human somatic cells do not or only transiently express telomerase and therefore shorten their telomeres with each cell division, most human cancer cells typically express high levels of telomerase and show unlimited cell proliferation. High telomerase expression allows cells to proliferate and expand long-term and therefore supports tumor growth. Owing to the high expression and its role, telomerase has become an attractive diagnostic and therapeutic cancer target. Imetelstat (GRN163L) is a potent and specific telomerase inhibitor and so far the only drug of its class in clinical trials. Here, we report on the structure and the mechanism of action of imetelstat as well as about the preclinical and clinical data and future prospects using imetelstat in cancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While incretins are of great interest for the therapy of diabetes 2, the focus has recently been brought to the thyroid, since rodents treated with glucagon-like peptide-1 (GLP-1) analogs were found to occasionally develop medullary thyroid carcinomas. Incretin receptors for GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) were therefore measured in various rodent and human thyroid conditions. In vitro GLP-1 and GIP receptor autoradiography were performed in normal thyroids, C-cell hyperplasia and medullary thyroid carcinomas in rodents. Receptor incidence and density were assessed and compared with the receptor expression in human thyroids, medullary thyroid carcinomas, and TT cells. GLP-1 receptors are expressed in C cells of normal rat and mice thyroids. Their density is markedly increased in rat C-cell hyperplasia and medullary thyroid carcinomas, where their incidence amounts to 100%. GIP receptors are neither detected in normal rodent thyroids nor in C-cell hyperplasia, but are present in all rat medullary thyroid carcinomas. No GLP-1 or GIP receptors are detected in normal human thyroids. Whereas only 27% of all human medullary thyroid carcinomas express GLP-1 receptors, up to 89% express GIP receptors in a high density. TT cells lack GLP-1 receptors but express GIP receptors. GLP-1 receptors are frequently expressed in non-neoplastic and neoplastic C cells in rodents while they are rarely detected in human C-cell neoplasia, suggesting species differences. Conversely, GIP receptors appear to be massively overexpressed in neoplastic C cells in both species. The presence of incretin receptors in thyroid C cell lesions suggests that this organ should be monitored before and during incretin-based therapy of diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human sexual determination is initiated by a cascade of genes that lead to the development of the fetal gonad. Whereas development of the female external genitalia does not require fetal ovarian hormones, male genital development requires the action of testicular testosterone and its more potent derivative dihydrotestosterone (DHT). The "classic" biosynthetic pathway from cholesterol to testosterone in the testis and the subsequent conversion of testosterone to DHT in genital skin is well established. Recently, an alternative pathway leading to DHT has been described in marsupials, but its potential importance to human development is unclear. AKR1C2 is an enzyme that participates in the alternative but not the classic pathway. Using a candidate gene approach, we identified AKR1C2 mutations with sex-limited recessive inheritance in four 46,XY individuals with disordered sexual development (DSD). Analysis of the inheritance of microsatellite markers excluded other candidate loci. Affected individuals had moderate to severe undervirilization at birth; when recreated by site-directed mutagenesis and expressed in bacteria, the mutant AKR1C2 had diminished but not absent catalytic activities. The 46,XY DSD individuals also carry a mutation causing aberrant splicing in AKR1C4, which encodes an enzyme with similar activity. This suggests a mode of inheritance where the severity of the developmental defect depends on the number of mutations in the two genes. An unrelated 46,XY DSD patient carried AKR1C2 mutations on both alleles, confirming the essential role of AKR1C2 and corroborating the hypothesis that both the classic and alternative pathways of testicular androgen biosynthesis are needed for normal human male sexual differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following development of the fetal bipotential gonad into a testis, male genital differentiation requires testicular androgens. Fetal Leydig cells produce testosterone that is converted to dihydrotestosterone in genital skin, resulting in labio-scrotal fusion. An alternative 'backdoor' pathway of dihydrotestosterone synthesis that bypasses testosterone has been described in marsupials, but its relevance to human biology has been uncertain. The classic and backdoor pathways share many enzymes, but a 3α-reductase, AKR1C2, is unique to the backdoor pathway. Human AKR1C2 mutations cause disordered sexual differentiation, lending weight to the idea that both pathways are required for normal human male genital development. These observations indicate that fetal dihydrotestosterone acts both as a hormone and as a paracrine factor, substantially revising the classic paradigm for fetal male sexual development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.