3 resultados para nonforage fiber source

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a multicore multidopant fiber which, when pumped with a single pump source around ∼800 nm , emits a more than one octave-spanning fluorescence spectrum ranging from 925 to 2300 nm . The fiber preform is manufactured from granulated oxides and the individual cores are doped with five different rare earths, i.e., Nd3+ , Yb3+ , Er3+ , Ho3+ , and Tm3+ .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary tract infections are the most common cause of E. coli bloodstream infections (BSI) but the mechanism of bloodstream invasion is poorly understood. Some clinical isolates have been observed to shield themselves with extracellular amyloid fibers called curli at physiologic temperature. We hypothesize that curli fiber assembly at 37 °C promotes bacteremic progression by urinary E. coli strains. Curli expression by cultured E. coli isolates from bacteriuric patients in the presence and absence of bacteremia were compared using Western blotting following amyloid fiber disruption with hexafluoroisopropanol. At 37 °C, urinary isolates from bacteremic patients were more likely to express curli than those from non-bacteremic patients [16/22 (73%) vs. 7/21 (33%); p = 0.01]. No significant difference in curli expression was observed at 30 °C [86% (19/22) vs. 76% (16/21); p = 0.5]. Isolates were clonally diverse between patients, indicating that this phenotype is distributed across multiple lineages. Most same-patient urine and blood isolates were highly related, consistent with direct invasion of urinary bacteria into the bloodstream. 37 °C curli expression was associated with bacteremic progression of urinary E. coli isolates in this population. These findings suggest new future diagnostic and virulence-targeting therapeutic approaches

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.