81 resultados para noncovariant gauge theories

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the supermultiplet structure of Noether currents for N=1 supersymmetric gauge theories. Using superfield identities and the field equations we show how to derive a superfield equation for the divergences of the Noether currents in terms of the supercurrent and anomaly superfields containing 16_B+16_F components. We refer to this as the natural supercurrent structure as it is invariant under all local symmetries of the theory. It corresponds to the S-multiplet of Komargodski and Seiberg. We clarify the on/off-shell nature of the currents appearing in this multiplet and we study in detail the effect of specific improvement transformations leading to 1) a Ferrara-Zumino multiplet and to 2) a multiplet containing the new improved energy-momentum tensor of Callan, Coleman and Jackiw. Our methods also apply to supersymmetric gauge theories with a Fayet-Iliopoulos term. We construct the natural supercurrent multiplet for such a theory and show how to improve this to a formally gauge-invariant Ferrara-Zumino multiplet by introducing a non-dynamical chiral superfield S to ensure superfield gauge invariance. Finally we study the coupling of this theory to supergravity and show that S remains non-dynamical if the theory is R-symmetric and that S becomes propagating if the theory is not R-symmetric, leading to non-minimal 16_B+16_F supergravity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that global properties of gauge groups can be understood as geometric properties in M-theory. Different wrappings of a system of N M5-branes on a torus reduce to four-dimensional theories with AN−1 gauge algebra and different unitary groups. The classical properties of the wrappings determine the global properties of the gauge theories without the need to impose any quantum conditions. We count the inequivalent wrappings as they fall into orbits of the modular group of the torus, which correspond to the S-duality orbits of the gauge theories.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-off effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the 2-d O(3) model with a q-term as a toy model for slowly walking 4-d non-Abelian gauge theories. Using the very efficient meron-cluster algorithm, an accurate investigation of the scale dependence of the renormalized coupling is carried out for different values of the vacuum angle q. Approaching q = p, the infrared dynamics of the 2-d O(3) model is determined by a non-trivial conformal fixed point. We provide evidence for a slowly walking behavior near the fixed point and we perform a finite-size scaling analysis of the mass gap.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider black probes of Anti-de Sitter and Schrödinger spacetimes embedded in string theory and M-theory and construct perturbatively new black hole geometries. We begin by reviewing black string configurations in Anti-de Sitter dual to finite temperature Wilson loops in the deconfined phase of the gauge theory and generalise the construction to the confined phase. We then consider black strings in thermal Schrödinger, obtained via a null Melvin twist of the extremal D3-brane, and construct three distinct types of black string configurations with spacelike as well as lightlike separated boundary endpoints. One of these configurations interpolates between the Wilson loop operators, with bulk duals defined in Anti-de Sitter and another class of Wilson loop operators, with bulk duals defined in Schrödinger. The case of black membranes with boundary endpoints on the M5-brane dual to Wilson surfaces in the gauge theory is analysed in detail. Four types of black membranes, ending on the null Melvin twist of the extremal M5-brane exhibiting the Schrödinger symmetry group, are then constructed. We highlight the differences between Anti-de Sitter and Schrödinger backgrounds and make some comments on the properties of the corresponding dual gauge theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantum link models provide an alternative non-perturbative formulation of Abelian and non-Abelian lattice gauge theories. They are ideally suited for quantum simulation, for example, using ultracold atoms in an optical lattice. This holds the promise to address currently unsolvable problems, such as the real-time and high-density dynamics of strongly interacting matter, first in toy-model gauge theories, and ultimately in QCD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently a new method to set the scale in lattice gauge theories, based on the gradient flow generated by the Wilson action, has been proposed, and the systematic errors of the new scales t0 and w0 have been investigated by various groups. The Wilson flow provides also an interesting alternative smoothing procedure particularly useful for the measurement of the topological charge as a pure gluonic observable. We show the viability of this method for N=1 supersymmetric Yang-Mills theory by analysing the configurations produced by the DESY-Muenster Collaboration. The relation between the scale and the topological charge has been investigated showing a strong correlation. We have found that the scale has a linear dependence on the topological charge, the slope of which increases decreasing the volume and the gluino mass. Moreover we have investigated this dependence as a function of the reference parameter used to define the scale: the tuning of this parameter turns out to be fundamental for a more reliable scale setting. Similar conclusions hold for the Sommer parameter r0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1  TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.