15 resultados para non-photochemical fluorescence quenching
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat-induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat-dependent alterations of thylakoid-associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western-blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non-photochemical fluorescence quenching. Recovery experiments showed that heat-dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat-induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat-dependent reduction of the Rubisco activation state.
Resumo:
Double stranded DNA hybrids containing up to four consecutive, face-to-face stacked porphyrins are described. Non-nucleosidic, 5,15-bisphenyl-substituted porphyrin building blocks were incorporated into complementary oligonucleotide strands. Upon hybridization multiple porphyrins are well accommodated inside the DNA scaffold without disturbing the overall B-DNA structure. The formation of double strands containing up to four free base porphyrins is enabled without compromising duplex stability. UV/vis, fluorescence, and CD spectroscopy demonstrate the formation of porphyrins H-aggregates inside the DNA double helix and provide evidence for the existence of strong excitonic coupling between interstrand stacked porphyrins. H-aggregation results in considerable fluorescence quenching. Most intense CD effects are observed in stacks containing four porphyrins. The findings demonstrate the value of DNA for the controlled formation of molecularly defined porphyrin aggregates.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
ABSTRACT Varying pulmonary shunt fractions during the respiratory cycle cause oxygen oscillations during mechanical ventilation. In artificially damaged lungs, cyclical recruitment of atelectasis is responsible for varying shunt according to published evidence. We introduce a complimentary hypothesis that cyclically varying shunt in healthy lungs is caused by cyclical redistribution of pulmonary perfusion. Administration of crystalloid or colloid infusions would decrease oxygen oscillations if our hypothesis was right. Therefore, n = 14 mechanically ventilated healthy pigs were investigated in 2 groups: crystalloid (fluid) versus no-fluid administration. Additional volume interventions (colloid infusion, blood withdrawal) were carried out in each pig. Intra-aortal PaO(2) oscillations were recorded using fluorescence quenching technique. Phase shift of oxygen oscillations during altered inspiratory to expiratory (I:E) ventilation ratio and electrical impedance tomography (EIT) served as control methods to exclude that recruitment of atelectasis is responsible for oxygen oscillations. In hypovolemia relevant oxygen oscillations could be recorded. Fluid and volume state changed PaO(2) oscillations according to our hypothesis. Fluid administration led to a mean decline of 105.3 mmHg of the PaO(2) oscillations amplitude (P < 0.001). The difference of the amplitudes between colloid administration and blood withdrawal was 62.4 mmHg in pigs not having received fluids (P = 0.0059). Fluid and volume state also changed the oscillation phase during altered I:E ratio. EIT excluded changes of regional ventilation (i.e., recruitment of atelectasis) to be responsible for these oscillations. In healthy pigs, cyclical redistribution of pulmonary perfusion can explain the size of respiratory-dependent PaO(2) oscillations.
Resumo:
We tested the hypothesis that light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is inhibited by moderately elevated temperature through an effect on Rubisco activase. When cotton (Gossypium hirsutum L.) or wheat (Triticum aestivum L.) leaf tissue was exposed to increasing temperatures in the light, activation of Rubisco was inhibited above 35 and 30°C, respectively, and the relative inhibition was greater for wheat than for cotton. The temperature-induced inhibition of Rubisco activation was fully reversible at temperatures below 40°C. In contrast to activation state, total Rubisco activity was not affected by temperatures as high as 45°C. Nonphotochemical fluorescence quenching increased at temperatures that inhibited Rubisco activation, consistent with inhibition of Calvin cycle activity. Initial and maximal chlorophyll fluorescence were not significantly altered until temperatures exceeded 40°C. Thus, electron transport, as measured by Chl fluorescence, appeared to be more stable to moderately elevated temperatures than Rubisco activation. Western-blot analysis revealed the formation of high-molecular-weight aggregates of activase at temperatures above 40°C for both wheat and cotton when inhibition of Rubisco activation was irreversible. Physical perturbation of other soluble stromal enzymes, including Rubisco, phosphoribulokinase, and glutamine synthetase, was not detected at the elevated temperatures. Our evidence indicates that moderately elevated temperatures inhibit light activation of Rubisco via a direct effect on Rubisco activase.
Resumo:
The excitonic splitting between the S-1 and S-2 electronic states of the doubly hydrogen-bonded dimer 2-pyridone center dot 6-methyl-2-pyridone (2PY center dot 6M2PY) is studied in a supersonic jet, applying two-color resonant two-photon ionization (2C-R2PI), UV-UV depletion, and dispersed fluorescence spectroscopies. In contrast to the C-2h symmetric (2-pyridone) 2 homodimer, in which the S-1 <- S-0 transition is symmetry-forbidden but the S-2 <- S-0 transition is allowed, the symmetry-breaking by the additional methyl group in 2PY center dot 6M2PY leads to the appearance of both the S-1 and S-2 origins, which are separated by Delta(exp) = 154 cm(-1). When combined with the separation of the S-1 <- S-0 excitations of 6M2PY and 2PY, which is delta = 102 cm(-1), one obtains an S-1/S-2 exciton coupling matrix element of V-AB, el = 57 cm(-1) in a Frenkel-Davydov exciton model. The vibronic couplings in the S-1/S-2 <- S-0 spectrum of 2PY center dot 6M2PY are treated by the Fulton-Gouterman single-mode model. We consider independent couplings to the intramolecular 6a' vibration and to the intermolecular sigma' stretch, and obtain a semi-quantitative fit to the observed spectrum. The dimensionless excitonic couplings are C(6a') = 0.15 and C(sigma') = 0.05, which places this dimer in the weak-coupling limit. However, the S-1/S-2 state exciton splittings Delta(calc) calculated by the configuration interaction singles method (CIS), time-dependent Hartree-Fock (TD-HF), and approximate second-order coupled-cluster method (CC2) are between 1100 and 1450 cm(-1), or seven to nine times larger than observed. These huge errors result from the neglect of the coupling to the optically active intra-and intermolecular vibrations of the dimer, which lead to vibronic quenching of the purely electronic excitonic splitting. For 2PY center dot 6M2PY the electronic splitting is quenched by a factor of similar to 30 (i.e., the vibronic quenching factor is Gamma(exp) = 0.035), which brings the calculated splittings into close agreement with the experimentally observed value. The 2C-R2PI and fluorescence spectra of the tautomeric species 2-hydroxypyridine center dot 6-methyl-2-pyridone (2HP center dot 6M2PY) are also observed and assigned. (C) 2011 American Institute of Physics.
Resumo:
Fluorescence microlymphography (FML) is used to visualize the lymphatic capillaries. A maximum spread of the fluorescence dye of ≥ 12 mm has been suggested for the diagnosis of lymphedema. However, data on sensitivity and specificity are lacking. The aim of this study was to investigate the accuracy of FML for diagnosing lymphedema in patients with leg swelling. Patients with lower extremity swelling were clinically assessed and separated into lymphedema and non-lymphatic edema groups. FML was studied in all affected legs and the maximum spread of lymphatic capillaries was measured. Test accuracy and receiver operator characteristic (ROC) analysis was performed to assess possible threshold values that predict lymphedema. Between March 2008 and August 2011 a total of 171 patients (184 legs) with a median age of 43.5 (IQR 24, 54) years were assessed. Of those, 94 (51.1%) legs were diagnosed with lymphedema. The sensitivity, specificity, positive and negative likelihood ratio and positive and negative predictive value were 87%, 64%, 2.45, 0.20, 72% and 83% for the 12-mm cut-off level and 79%, 83%, 4.72, 0.26, 83% and 79% for the 14-mm cut-off level, respectively. The area under the ROC curve was 0.82 (95% CI: 0.76, 0.88). Sensitivity was higher in the secondary versus primary lymphedema (95.0% vs 74.3%, p = 0.045). No major adverse events were observed. In conclusion, FML is a simple and safe technique for detecting lymphedema in patients with leg swelling. A cut-off level of ≥ 14-mm maximum spread has a high sensitivity and high specificity of detecting lymphedema and should be chosen.
Resumo:
The aim of this study was to assess the influence on the infrared laser fluorescence response of some storage methods commonly used in dental research. Forty extracted permanent teeth, selected from a pool of frozen teeth, were divided into four groups of 10. Three groups were stored at 4 degrees C in 1% chloramine, 10% formalin or 0.02% thymol solution. The fourth group was stored at -20 degrees C (no storage solution added). Fluorescence measurements were performed at 14, 77, 113, 168, 232, 486 and 737 days. After 2 years, significant decreases in fluorescence (p<0.01) for the samples in formalin (-60%), chloramine (-72%) and thymol (-54%) were observed. The frozen teeth showed a slight but non-significant increase in fluorescence of 5% (p>0.01). Storing solutions have a significant influence on the fluorescence yield. Samples used for in vitro purposes stored frozen do not significantly change their fluorescence response. Thus, cut-off values obtained under the latter conditions could be extrapolated to the in vivo situation.
Resumo:
Ectopic acromegaly represents less than 1% of the reported cases of acromegaly. Although clinical improvement is common after treatment with somatostatin (SMS) analogs, the biochemical response and tumor size of the growth hormone-releasing hormone (GHRH)-producing tumor and its metastases are less predictable. Subject A 36-year-old male was referred because of a 3-year history of acromegaly related symptoms. He had undergone lung surgery in 1987 for a "benign" carcinoid tumor. Endocrine evaluation confirmed acromegaly Plasma IGF-1: 984 ng/ml (63-380), GH: 49.8 ng/ml (<5). MRI showed a large mass in the left cerebellopontine angle and diffuse pituitary hyperplasia. Pulmonary, liver and bone metastases were shown by chest and abdominal CT scans. Ectopic GHRH secretion was suspected. Methods Measurement of circulating GHRH levels by fluorescence immunoassay levels and immunohistochemical study of the primary lung tumor and metastatic tissue with anti-GHRH and anti-somatostatin receptor type 2 (sst2A) antibodies. Results Basal plasma GHRH: 4654 pg/ml (<100). Pathological study of liver and bone biopsy material and lung tissue removed 19 years earlier was consistent with an atypical carcinoid producing GHRH and exhibiting sst2A receptor expression. Treatment with octreotide LAR 20-40 mg q. month resulted in normalization of plasma IGF-1 levels. Circulating GHRH levels decreased dramatically. The size of the left prepontine cistern mass, with SMS receptors shown by a radiolabeled pentetreotide scan, decreased by 80% after 18 months of therapy. Total regression of pituitary enlargement was also observed. No changes were observed in lung and liver metastases. After 24 months of therapy the patient is asymptomatic and living a full and active life.
Resumo:
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca2+ influx evoked by low-threshold Ca2+ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (−50 mV), which suppressed these low-threshold Ca2+ spikes, induced no plasticity. The postsynaptic dendritic Ca2+ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Resumo:
After reviewing how simulations employing classical lattice gauge theory permit to test a conjectured Euclideanization property of a light-cone Wilson loop in a thermal non-Abelian plasma, we show how Euclidean data can in turn be used to estimate the transverse collision kernel, C(k⊥), characterizing the broadening of a high-energy jet. First results, based on data produced recently by Panero et al, suggest that C(k⊥) is enhanced over the known NLO result in a soft regime k⊥ < a few T. The shape of k3⊥ C(k⊥) is consistent with a Gaussian at small k⊥.
Resumo:
2-Aminopurine (2AP) is a fluorescent isomer of adenine and has a fluorescence lifetime of ~11 ns in water. It is widely used in biochemical settings as a site-specific fluorescent probe of DNA and RNA structure and base-flipping and -folding. These assays assume that 2AP is intrinsically strongly fluorescent. Here, we show this not to be the case, observing that gas-phase, jet-cooled 2-aminopurine and 9-methyl-2-aminopurine have very short fluorescence lifetimes (156 ps and 210 ps, respectively); they are, to all intents and purposes, non-fluorescent. We find that the lifetime of 2-aminopurine increases dramatically when it is part of a hydrate cluster, 2AP·(H2O)n, where n = 1–3. Not only does it depend on the presence of water molecules, it also depends on the specific hydrogen-bonding site to which they attach and on the number of H2O molecules at that site. We selectively microhydrate 2-aminopurine at its sugar-edge, cis-amino or trans-amino sites and see that its fluorescence lifetime increases by 4, 50 and 95 times (to 14.5 ns), respectively.
Resumo:
BACKGROUND AND PURPOSE (99)TC combined with blue-dye mapping is considered the best sentinel lymph node (SLN) mapping technique in cervical cancer. Indocyanine green (ICG) with near infrared fluorescence imaging has been introduced as a new methodology for SLN mapping. The aim of this study was to compare these two techniques in the laparoscopic treatment of cervical cancer. METHODS Medical records of patients undergoing laparoscopic SLN mapping for cervical cancer with either (99)Tc and patent blue dye (Group 1) or ICG (Group 2) from April 2008 until August 2012 were reviewed. Sensitivity, specificity, and overall and bilateral detection rates were calculated and compared. RESULTS Fifty-eight patients were included in the study-36 patients in Group 1 and 22 patients in Group 2. Median tumor diameter was 25 and 29 mm, and mean SLN count was 2.1 and 3.7, for Groups 1 and 2, respectively. Mean non-SLN (NSLN) count was 39 for both groups. SLNs were ninefold more likely to be affected by metastatic disease compared with NSLNs (p < 0.005). Sensitivity and specificity were both 100 %. Overall detection rates were 83 and 95.5 % (p = nonsignificant), and bilateral detection rates were 61 and 95.5 % (p < 0.005), for Groups 1 and 2, respectively. In 75 % of cases, SLNs were located along the external or internal iliac nodal basins. CONCLUSIONS ICG SLN mapping in cervical cancer provides high overall and bilateral detection rates that compare favorably with the current standard of care.