46 resultados para non-REM sleep
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
STUDY OBJECTIVE: In healthy subjects, arousability to inspiratory resistive loading is greater during rapid eye movement (REM) sleep compared with non-REM (NREM) sleep but is poorest in REM sleep in patients with sleep apnea. We therefore examined the hypothesis that sleep fragmentation impairs arousability, especially from REM sleep. DESIGN: Two blocks of 3 polysomnographies (separated by at least 1 week) were performed randomly. An inspiratory-loaded night followed either 2 undisturbed control nights (LN(C)) or 2 acoustically fragmented nights (LN(F)) SETTING: Sleep laboratory. PARTICIPANTS: Sixteen healthy men aged 20 to 29 years. INTERVENTIONS: In both loaded nights, an inspiratory resistive load was added via a valved facemask every 2 minutes during sleep and turned off either when arousal occurred or after 2 minutes. MEASUREMENTS AND RESULTS: During LN(F), arousability remained significantly greater in REM sleep (71% aroused within 2 minutes) compared with stage 2 (29%) or stage 3/4 (16%) sleep. After sleep fragmentation, arousability was decreased in stage 2 sleep (LN(F): 29%; LN(C): 38%; p < .05) and low in early REM sleep, increasing across the night (p < .01). In stage 3/4 sleep, neither an attenuation nor a change across the night was seen after sleep fragmentation. CONCLUSIONS: Mild sleep fragmentation is already sufficient to attenuate arousability in stage 2 sleep and to decrease arousability in early, compared with late, REM sleep. This means that sleep fragmentation affects the arousal response to increasing resistance and that the effects are different in stage 2 and REM sleep. The biologic reason for this increase in the arousal response in REM sleep across the night is not clear.
Resumo:
Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.
Resumo:
Narcolepsy is characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep abnormalities, including cataplexy. The aim of this study was to assess REM sleep pressure and homeostasis in narcolepsy. Six patients with narcolepsy and six healthy controls underwent a REM sleep deprivation protocol, including one habituation, one baseline, two deprivation nights (D1, D2) and one recovery night. Multiple sleep latency tests (MSLTs) were performed during the day after baseline and after D2. During D1 and D2 REM sleep was prevented by awakening the subjects at the first polysomnographic signs of REM sleep for 2 min. Mean sleep latency and number of sleep-onset REM periods (SOREMs) were determined on all MSLT. More interventions were required to prevent REM sleep in narcoleptics compared with control subjects during D1 (57 ± 16 versus 24 ± 10) and D2 (87 ± 22 versus 35 ± 8, P = 0.004). Interventions increased from D1 to D2 by 46% in controls and by 53% in narcoleptics (P < 0.03). Selective REM sleep deprivation was successful in both controls (mean reduction of REM to 6% of baseline) and narcoleptics (11%). Both groups had a reduction of total sleep time during the deprivation nights (P = 0.03). Neither group had REM sleep rebound in the recovery night. Narcoleptics had, however, an increase in the number of SOREMs on MSLT (P = 0.005). There was no increase in the number of cataplexies after selective REM sleep deprivation. We conclude that: (i) REM sleep pressure is higher in narcoleptics; (ii) REM sleep homeostasis is similar in narcoleptics and controls; (iii) in narcoleptics selective REM sleep deprivation may have an effect on sleep propensity but not on cataplexy.
Resumo:
This study examines the excitability and recruitment of spinal motoneurons in human sleep. The main objective was to assess whether supraspinal inhibition affects the different subpopulations of the compound spinal motoneuron pool in the same way or rather in a selective fashion in the various sleep stages. To this end, we studied F-conduction velocities (FCV) and F-tacheodispersion alongside F-amplitudes and F-persistence in 22 healthy subjects in sleep stages N2, N3 (slow-wave sleep), REM and in wakefulness. Stimuli were delivered on the ulnar nerve, and F-waves were recorded from the first dorsal interosseus muscle. Repeated sets of stimuli were stored to obtain at least 15 F-waves for each state of vigilance. F-tacheodispersion was calculated based on FCVs using the modified Kimura formula. Confirming the only previous study, excitability of spinal motoneurons was generally decreased in all sleep stages compared with wakefulness as indicated by significantly reduced F-persistence and F-amplitudes. More importantly, F-tacheodispersion showed a narrowed range of FCV in all sleep stages, most prominently in REM. In non-REM, this narrowed range was associated with a shift towards significantly decreased maximal FCV and mean FCV as well as with a trend towards lower minimal FCV. In REM, the lowering of mean FCV was even more pronounced, but contrary to non-REM sleep without a shift of minimal and maximal FCV. Variations in F-tacheodispersion between sleep stages suggest that different supraspinal inhibitory neuronal circuits acting on the spinal motoneuron pool may contribute to muscle hypotonia in human non-REM sleep and to atonia in REM sleep.
Resumo:
REM sleep behavior disorder (RBD) is reported in up to 50% of patients with Parkinson's disease (PD). Only a few systematic, large-scale studies have addressed the characteristics of RBD in PD. The aim of the present study is to assess the frequency of RBD in patients with PD and the association with PD characteristics.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a novel research tool in neurology and psychiatry. It is currently being evaluated as a conceivable alternative to electroconvulsive therapy for the treatment of mood disorders. Eight healthy young (age range 21-25 years) right-handed men without sleep complaints participated in the study. Two sessions at a 1-week interval, each consisting of an adaptation night (sham stimulation) and an experimental night (rTMS in the left dorsolateral prefrontal cortex or sham stimulation; crossover design), were scheduled. In each subject, 40 trains of 2-s duration of rTMS (inter-train interval 28 s) were applied at a frequency of 20 Hz (i.e. 1600 pulses per session) and at an intensity of 90% of the motor threshold. Stimulations were scheduled 80 min before lights off. The waking EEG was recorded for 10-min intervals approximately 30 min prior to and after the 20-min stimulations, and polysomnographic recordings were obtained during the subsequent sleep episode (23.00-07.00 h). The power spectra of two referential derivations, as well as of bipolar derivations along the antero-posterior axis over the left and right hemispheres, were analyzed. rTMS induced a small reduction of sleep stage 1 (in min and percentage of total sleep time) over the whole night and a small enhancement of sleep stage 4 during the first non-REM sleep episode. Other sleep variables were not affected. rTMS of the left dorsolateral cortex did not alter the topography of EEG power spectra in waking following stimulation, in the all-night sleep EEG, or during the first non-REM sleep episode. Our results indicate that a single session of rTMS using parameters like those used in depression treatment protocols has no detectable side effects with respect to sleep in young healthy males.
Resumo:
STUDY OBJECTIVES 1) To investigate the impact of acetazolamide, a drug commonly prescribed for altitude sickness, on cortical oscillations in patients with obstructive sleep apnea syndrome (OSAS). 2) To examine alterations in the sleep EEG after short-term discontinuation of continuous positive airway pressure (CPAP) therapy. DESIGN Data from two double-blind, placebo-controlled randomized cross-over design studies were analyzed. SETTING Polysomnographic recordings in sleep laboratory at 490 m and at moderate altitudes in the Swiss Alps: 1630 or 1860 m and 2590 m. PATIENTS Study 1: 39 OSAS patients. Study 2: 41 OSAS patients. INTERVENTIONS Study 1: OSAS patients withdrawn from treatment with CPAP. Study 2: OSAS patients treated with autoCPAP. Treatment with acetazolamide (500-750 mg) or placebo at moderate altitudes. MEASUREMENTS AND RESULTS An evening dose of 500 mg acetazolamide reduced slow-wave activity (SWA; approximately 10%) and increased spindle activity (approximately 10%) during non-REM sleep. In addition, alpha activity during wake after lights out was increased. An evening dose of 250 mg did not affect these cortical oscillations. Discontinuation of CPAP therapy revealed a reduction in SWA (5-10%) and increase in beta activity (approximately 25%). CONCLUSIONS The higher evening dose of 500 mg acetazolamide showed the "spectral fingerprint" of Benzodiazepines, while 250 mg acetazolamide had no impact on cortical oscillations. However, both doses had beneficial effects on oxygen saturation and sleep quality.
Resumo:
Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.
Resumo:
BACKGROUND/AIMS In a questionnaire survey, we identified 36 (9%) of 417 Parkinson's disease (PD) patients with sleepwalking (SW); 72% of them also had a history of REM sleep behaviour disorder (RBD). We aimed to assess the clinical and polysomnographic characteristics of SW in PD and to compare them to patients with PD with and without a history of RBD. METHODS We performed video-polysomnography and detailed clinical examination in 30 PD patients from the above-mentioned survey: 10 patients with a history of SW, 10 patients with a history of RBD, and 10 patients with no history of either SW or RBD. RESULTS PD patients with SW had higher depression, anxiety and Hoehn & Yahr scores and lower activities of daily living scores than patients without a history of RBD but did not differ from patients with RBD. Patients with SW and RBD also had more often dyskinesia and hallucinations. By polysomnography, RBD was observed in 8 patients with SW and in all patients with a history of RBD. A total of 5 patients without a history of either SW or RBD had REM sleep without atonia without behavioural peculiarities. CONCLUSION SW in PD is associated with depression, higher disease severity and functional disability. The simultaneous occurrence of SW and RBD (overlap parasomnia) in most patients suggests a common underlying disturbance of motor control during sleep in PD, with variable manifestations in different sleep stages.
Resumo:
BACKGROUND: During sleep, ventilation and functional residual capacity (FRC) decrease slightly. This study addresses regional lung aeration during wakefulness and sleep. METHODS: Ten healthy subjects underwent spirometry awake and with polysomnography, including pulse oximetry, and also CT when awake and during sleep. Lung aeration in different lung regions was analyzed. Another three subjects were studied awake to develop a protocol for dynamic CT scanning during breathing. RESULTS: Aeration in the dorsal, dependent lung region decreased from a mean of 1.14 +/- 0.34 mL (+/- SD) of gas per gram of lung tissue during wakefulness to 1.04 +/- 0.29 mL/g during non-rapid eye movement (NREM) sleep (- 9%) [p = 0.034]. In contrast, aeration increased in the most ventral, nondependent lung region, from 3.52 +/- 0.77 to 3.73 +/- 0.83 mL/g (+ 6%) [p = 0.007]. In one subject studied during rapid eye movement (REM) sleep, aeration decreased from 0.84 to 0.65 mL/g (- 23%). The fall in dorsal lung aeration during sleep correlated to awake FRC (R(2) = 0.60; p = 0.008). Airway closure, measured awake, occurred near and sometimes above the FRC level. Ventilation tended to be larger in dependent, dorsal lung regions, both awake and during sleep (upper region vs lower region, 3.8% vs 4.9% awake, p = 0.16, and 4.5% vs 5.5% asleep, p = 0.09, respectively). CONCLUSIONS: Aeration is reduced in dependent lung regions and increased in ventral regions during NREM and REM sleep. Ventilation was more uniformly distributed between upper and lower lung regions than has previously been reported in awake, upright subjects. Reduced respiratory muscle tone and airway closure are likely causative factors.
Resumo:
The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.
Resumo:
OBJECTIVES Animal and human studies have shown that sleep may have an impact on functional recovery after brain damage. Baclofen (Bac) and gamma-hydroxybutyrate (GHB) have been shown to induce physiological sleep in humans, however, their effects in rodents are unclear. The aim of this study is to characterize sleep and electroencelphalogram (EEG) after Bac and GHB administration in rats. We hypothesized that both drugs would induce physiological sleep. METHODS Adult male Sprague-Dawley rats were implanted with EEG/electromyogram (EMG) electrodes for sleep recordings. Bac (10 or 20 mg/kg), GHB (150 or 300 mg/kg) or saline were injected 1 h after light and dark onset to evaluate time of day effect of the drugs. Vigilance states and EEG spectra were quantified. RESULTS Bac and GHB induced a non-physiological state characterized by atypical behavior and an abnormal EEG pattern. After termination of this state, Bac was found to increase the duration of non-rapid eye movement (NREM) and rapid eye movement (REM) sleep (∼90 and 10 min, respectively), reduce sleep fragmentation and affect NREM sleep episode frequency and duration (p<0.05). GHB had no major effect on vigilance states. Bac drastically increased EEG power density in NREM sleep in the frequencies 1.5-6.5 and 9.5-21.5 Hz compared to saline (p<0.05), while GHB enhanced power in the 1-5-Hz frequency band and reduced it in the 7-9-Hz band. Slow-wave activity in NREM sleep was enhanced 1.5-3-fold during the first 1-2 h following termination of the non-physiological state. The magnitude of drug effects was stronger during the dark phase. CONCLUSION While both Bac and GHB induced a non-physiological resting state, only Bac facilitated and consolidated sleep, and promoted EEG delta oscillations thereafter. Hence, Bac can be considered a sleep-promoting drug and its effects on functional recovery after stroke can be evaluated both in humans and rats.
Resumo:
Nonmotor disturbances (NMDs) affect most patients with Parkinson's disease (PD) and often have a profound impact on their quality of life. NMDs such as depression, anxiety, fatigue, REM sleep behavior disorder, constipation, delayed gastric emptying, altered olfaction and pain can precede the onset of motor symptoms. Other NMDs, including hallucinations, dementia, excessive daytime sleepiness, insomnia, orthostatic hypotension and bladder disturbances, typically appear later in the course of PD. For most NMDs of PD, nondopaminergic and non-nigrostriatal mechanisms (e.g. neurodegeneration of other transmitter systems in the cortex and brainstem, side effects of medications, genetic and psychosocial factors) are considered more relevant than the 'classical' dopaminergic-nigrostriatal dysfunction. The recognition of NMDs requires a high degree of clinical suspicion, the use of specific questionnaires and ancillary tests. Pharmacological and nonpharmacological approaches can be effective, but for most forms of treatment of NMDs, the scientific evidence is limited.
Resumo:
BACKGROUND: The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. METHODS: Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. RESULTS: Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. CONCLUSIONS: This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.
Resumo:
BACKGROUND: Reports on the effects of focal hemispheric damage on sleep EEG are rare and contradictory. PATIENTS AND METHODS: Twenty patients (mean age +/- SD 53 +/- 14 years) with a first acute hemispheric stroke and no sleep apnea were studied. Stroke severity [National Institute of Health Stroke Scale (NIHSS)], volume (diffusion-weighted brain MRI), and short-term outcome (Rankin score) were assessed. Within the first 8 days after stroke onset, 1-3 sleep EEG recordings per patient were performed. Sleep scoring and spectral analysis were based on the central derivation of the healthy hemisphere. Data were compared with those of 10 age-matched and gender-matched hospitalized controls with no brain damage and no sleep apnea. RESULTS: Stroke patients had higher amounts of wakefulness after sleep onset (112 +/- 53 min vs. 60 +/- 38 min, p < 0.05) and a lower sleep efficiency (76 +/- 10% vs. 86 +/- 8%, p < 0.05) than controls. Time spent in slow-wave sleep (SWS) and rapid eye movement (REM) sleep and total sleep time were lower in stroke patients, but differences were not significant. A positive correlation was found between the amount of SWS and stroke volume (r = 0.79). The slow-wave activity (SWA) ratio NREM sleep/wakefulness was lower in patients than in controls (p < 0.05), and correlated with NIHSS (r = -0.47). CONCLUSION: Acute hemispheric stroke is accompanied by alterations of sleep EEG over the healthy hemisphere that correlate with stroke volume and outcome. The increased SWA during wakefulness and SWS over the healthy hemisphere contralaterally to large strokes may reflect neuronal hypometabolism induced transhemispherically (diaschisis).