12 resultados para noise level
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The aim of this pilot study was to evaluate the noise level in an operating theatre as a possible surrogate marker for intraoperative behaviour, and to detect any correlation between sound level and subsequent surgical-site infection (SSI).
Resumo:
Noise peaks are powerful distractors. This study focuses on the impact of noise peaks on surgical teams' communication during 109 long abdominal surgeries. We related measured noise peaks during 5-min intervals to the amount of observed communication during the same interval. Results show that noise peaks are associated with less case-relevant communication; this effect is moderated by the level of surgical experience; case-relevant communications decrease under high noise peak conditions among junior, but not among senior surgeons. However, case-irrelevant communication did not decrease under high noise level conditions, rather there was a trend to more case-irrelevant communication under high noise peaks. The results support the hypothesis that noise peaks impair communication because they draw on attentional resources rather than impairing understanding of communication. As case-relevant communication is important for surgical performance, exposure to high noise peaks in the OR should be minimised especially for less experienced surgeons. Practitioner Summary: This study investigated whether noise during surgeries influenced the communication within surgical teams. During abdominal surgeries, noise levels were measured and communication was observed. Results showed that high noise peaks reduced the frequency of patient-related communication, but did not reduce patient-irrelevant communication. Noise may negatively affect team coordination in surgeries.
Resumo:
Responses of many real-world problems can only be evaluated perturbed by noise. In order to make an efficient optimization of these problems possible, intelligent optimization strategies successfully coping with noisy evaluations are required. In this article, a comprehensive review of existing kriging-based methods for the optimization of noisy functions is provided. In summary, ten methods for choosing the sequential samples are described using a unified formalism. They are compared on analytical benchmark problems, whereby the usual assumption of homoscedastic Gaussian noise made in the underlying models is meet. Different problem configurations (noise level, maximum number of observations, initial number of observations) and setups (covariance functions, budget, initial sample size) are considered. It is found that the choices of the initial sample size and the covariance function are not critical. The choice of the method, however, can result in significant differences in the performance. In particular, the three most intuitive criteria are found as poor alternatives. Although no criterion is found consistently more efficient than the others, two specialized methods appear more robust on average.
Resumo:
AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials.
Resumo:
AIM To compare the computed tomography (CT) dose and image quality with the filtered back projection against the iterative reconstruction and CT with a minimal electronic noise detector. METHODS A lung phantom (Chest Phantom N1 by Kyoto Kagaku) was scanned with 3 different CT scanners: the Somatom Sensation, the Definition Flash and the Definition Edge (all from Siemens, Erlangen, Germany). The scan parameters were identical to the Siemens presetting for THORAX ROUTINE (scan length 35 cm and FOV 33 cm). Nine different exposition levels were examined (reference mAs/peek voltage): 100/120, 100/100, 100/80, 50/120, 50/100, 50/80, 25/120, 25/100 and 25 mAs/80 kVp. Images from the SOMATOM Sensation were reconstructed using classic filtered back projection. Iterative reconstruction (SAFIRE, level 3) was performed for the two other scanners. A Stellar detector was used with the Somatom Definition Edge. The CT doses were represented by the dose length products (DLPs) (mGycm) provided by the scanners. Signal, contrast, noise and subjective image quality were recorded by two different radiologists with 10 and 3 years of experience in chest CT radiology. To determine the average dose reduction between two scanners, the integral of the dose difference was calculated from the lowest to the highest noise level. RESULTS When using iterative reconstruction (IR) instead of filtered back projection (FBP), the average dose reduction was 30%, 52% and 80% for bone, soft tissue and air, respectively, for the same image quality (P < 0.0001). The recently introduced Stellar detector (Sd) lowered the radiation dose by an additional 27%, 54% and 70% for bone, soft tissue and air, respectively (P < 0.0001). The benefit of dose reduction was larger at lower dose levels. With the same radiation dose, an average of 34% (22%-37%) and 25% (13%-46%) more contrast to noise was achieved by changing from FBP to IR and from IR to Sd, respectively. For the same contrast to noise level, an average of 59% (46%-71%) and 51% (38%-68%) dose reduction was produced for IR and Sd, respectively. For the same subjective image quality, the dose could be reduced by 25% (2%-42%) and 44% (33%-54%) using IR and Sd, respectively. CONCLUSION This study showed an average dose reduction between 27% and 70% for the new Stellar detector, which is equivalent to using IR instead of FBP.
Resumo:
Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P’s nucleus. Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.
Resumo:
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.
Resumo:
Objective: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. Methods: We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. Results: We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Conclusion: Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.
Resumo:
Among other auditory operations, the analysis of different sound levels received at both ears is fundamental for the localization of a sound source. These so-called interaural level differences, in animals, are coded by excitatory-inhibitory neurons yielding asymmetric hemispheric activity patterns with acoustic stimuli having maximal interaural level differences. In human auditory cortex, the temporal blood oxygen level-dependent (BOLD) response to auditory inputs, as measured by functional magnetic resonance imaging (fMRI), consists of at least two independent components: an initial transient and a subsequent sustained signal, which, on a different time scale, are consistent with electrophysiological human and animal response patterns. However, their specific functional role remains unclear. Animal studies suggest these temporal components being based on different neural networks and having specific roles in representing the external acoustic environment. Here we hypothesized that the transient and sustained response constituents are differentially involved in coding interaural level differences and therefore play different roles in spatial information processing. Healthy subjects underwent monaural and binaural acoustic stimulation and BOLD responses were measured using high signal-to-noise-ratio fMRI. In the anatomically segmented Heschl's gyrus the transient response was bilaterally balanced, independent of the side of stimulation, while in opposite the sustained response was contralateralized. This dissociation suggests a differential role at these two independent temporal response components, with an initial bilateral transient signal subserving rapid sound detection and a subsequent lateralized sustained signal subserving detailed sound characterization.
Resumo:
This article looks at the negotiations between Switzerland and Germany on air traffic regulation with the help of negotiation analysis tools. A number of factors pre-eminent in the literature on negotiation processes and outcomes are presented and critically assessed. In particular arguments of “power”, which are often insufficiently explored in analysing interstate cooperation, are brought back into the picture. The article argues that structural power best explains the negotiation results while domestic politics and information asymmetries both account for non-ratification of the treaty. Institutionalist arguments on the constraining effects of international norms and institutions as well as explanations focusing on negotiation skills are of minor importance. Moreover, the nature of the Swiss intra-governmental setting at the federal level did not encourage the Swiss negotiators to exploit all means during the different stages of the bargaining process. The article concludes by illuminating a number of policy observations in the broader context of Swiss foreign relations and indicating avenues for further research
Resumo:
OBJECTIVE The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. MATERIALS AND METHODS 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. RESULTS Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. CONCLUSION The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.
Resumo:
Strengthening car drivers’ intention to prevent road-traffic noise is a first step toward noise abatement through voluntary change of behavior. We analyzed predictors of this intention based on the norm activation model (i.e., personal norm, problem awareness, awareness of consequences, social norm, and value orientations). Moreover, we studied the effects of noise exposure, noise sensitivity, and noise annoyance on problem awareness. Data came from 1,002 car drivers who participated in a two-wave longitudinal survey over 4 months. Personal norm had a large prospective effect on intention, even when the previous level of intention was controlled for, and mediated the effect of all other variables on intention. Almost 60% of variance in personal norm was explained by problem awareness, social norm, and biospheric value orientation. The effects of noise sensitivity and noise exposure on problem awareness were small and mediated by noise annoyance. We propose four communication strategies for strengthening the intention to prevent road-traffic noise in car drivers.