31 resultados para neurological
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
STUDY DESIGN: Retrospective case review. OBJECTIVES: In the present study, the neurological outcome, retirement and prognostic factors of patients with spinal cord injury without radiographic abnormality (SCIWORA) were evaluated. SETTING: Swiss national work accident insurance database. METHODS: The medical histories of 32 patients who were insured by the Swiss Accident Insurance Fund (SUVA) and had SCIWORA between 1995 and 2004 were evaluated thoroughly. Moreover, all available magnetic resonance imaging (MRI) scans were evaluated. RESULTS: At the last follow-up, none of the patients had complete spinal cord injury, only 4 patients had severe deficits and 12 patients had normal motor and sensory function in the neurological examination. However, only 7 out of 32 patients had returned to full-time work and 10 out of 32 patients were fully retired. Both the presence of spinal cord change (ρ=0.51) and higher maximum spinal cord compression (ρ=0.57) in MRI scan correlated with the likelihood for retirement; older age (ρ=0.38) and physical load of work (ρ=0.4) correlated with retirement to a lesser extent. CONCLUSION: Although the neurological outcome of SCIWORA is mostly good, the retirement rate is high. Presence of spinal cord change and severity of cord compression are the best predictors for the degree of retirement.
Resumo:
Sclerotherapy has been shown to be an effective and increasingly popular therapeutic strategy for the treatment of varicose veins. However, recent reports of serious side effects, including cerebrovascular accidents (CVA) and transient ischemic attacks (TIA), as well as speech and visual disturbances, have caused serious concern regarding its use. This review evaluated the reported incidences of neurological side effects associated with the use of sclerotherapy.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
Since the publication of the first European Federation of Neurological Societies (EFNS) guidelines in 2005 on the management of restless legs syndrome (RLS; also known as Willis-Ekbom disease), there have been major therapeutic advances in the field. Furthermore, the management of RLS is now a part of routine neurological practice in Europe. New drugs have also become available, and further randomized controlled trials have been undertaken. These guidelines were undertaken by the EFNS in collaboration with the European Neurological Society and the European Sleep Research Society.
Resumo:
This paper is meant to provide guidance to anyone wishing to write a neurological guideline for diagnosis or treatment, and is directed at the Scientist Panels and task forces of the European Federation of Neurological Societies (EFNS). It substitutes the previous guidance paper from 2004. It contains several new aspects: the guidance is now based on a change of the grading system for evidence and for the resulting recommendations, and has adopted The Grading of Recommendations, Assessment, Development and Evaluation system (GRADE). The process of grading the quality of evidence and strength of recommendations can now be improved and made more transparent. The task forces embarking on the development of a guideline must now make clearer and more transparent choices about outcomes considered most relevant when searching the literature and evaluating their findings. Thus, the outcomes chosen will be more critical, more patient-oriented and easier to translate into simple recommendations. This paper also provides updated practical recommendations for planning a guideline task force within the framework of the EFNS. Finally, this paper hopes to find the approval also by the relevant bodies of our future organization, the European Academy of Neurology.
Resumo:
Qualitative assessment of spontaneous motor activity in early infancy is widely used in clinical practice. It enables the description of maturational changes of motor behavior in both healthy infants and infants who are at risk for later neurological impairment. These assessments are, however, time-consuming and are dependent upon professional experience. Therefore, a simple physiological method that describes the complex behavior of spontaneous movements (SMs) in infants would be helpful. In this methodological study, we aimed to determine whether time series of motor acceleration measurements at 40-44 weeks and 50-55 weeks gestational age in healthy infants exhibit fractal-like properties and if this self-affinity of the acceleration signal is sensitive to maturation. Healthy motor state was ensured by General Movement assessment. We assessed statistical persistence in the acceleration time series by calculating the scaling exponent α via detrended fluctuation analysis of the time series. In hand trajectories of SMs in infants we found a mean α value of 1.198 (95 % CI 1.167-1.230) at 40-44 weeks. Alpha changed significantly (p = 0.001) at 50-55 weeks to a mean of 1.102 (1.055-1.149). Complementary multilevel regression analysis confirmed a decreasing trend of α with increasing age. Statistical persistence of fluctuation in hand trajectories of SMs is sensitive to neurological maturation and can be characterized by a simple parameter α in an automated and observer-independent fashion. Future studies including children at risk for neurological impairment should evaluate whether this method could be used as an early clinical screening tool for later neurological compromise.
Resumo:
OBJECTIVES: To merge clinical information from partly overlapping medical record databases of the Small Animal Teaching Hospital of the Vetsuisse Faculty, University of Berne. To describe the frequencies and localisations of neurological diseases in dogs, as well as their age, gender, breed and geographical distributions. METHODS: In this retrospective study, a new database, with specific variables and a diagnosis key list 'VITAMIN D', was created and defined. A total of 4497 dogs (average of 375 per year) with a well-documented neurological disease were included in the study. A key list for the diagnoses was developed and applied to either the presumptive or the clinical and neurohistopathological diagnosis, with a serial number, a code for localisation and a code for differential diagnoses. RESULTS: Approximately 1159 dogs (26 per cent) had a neurohistopathological diagnosis confirmed, 1431 (32 per cent) had a clinical diagnosis confirmed and 1491 (33 per cent) had a presumptive diagnosis. The most frequent breeds were mixed-breed dogs (577 of 4497, 13 per cent), followed by German shepherd dogs (466 of 4497, 10 per cent). The most common localisations were the forebrain (908 of 4497, 20 per cent) and the spinal cord at the thoracolumbar area (840 of 4497, 19 per cent). Most dogs were diagnosed with degenerative diseases (38 per cent), followed by inflammatory/infectious diseases (14 per cent). The highest number of submissions originated from geographic regions around the referral hospital and from regions with higher human population densities. CLINICAL SIGNIFICANCE: By defining closed-list fields and allocating all data to the corresponding fields, a standardised database that can be used for further studies was generated. The analysis of this study gives examples of the possible uses of a standardised database.
Resumo:
ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Resumo:
Microbeam radiation therapy (MRT), a form of experimental radiosurgery of tumours using multiple parallel, planar, micrometres-wide, synchrotron-generated X-ray beams ('microbeams'), can safely deliver radiation doses to contiguous normal animal tissues that are much higher than the maximum doses tolerated by the same normal tissues of animals or patients from any standard millimetres-wide radiosurgical beam. An array of parallel microbeams, even in doses that cause little damage to radiosensitive developing tissues, for example, the chick chorioallantoic membrane, can inhibit growth or ablate some transplanted malignant tumours in rodents. The cerebella of 100 normal 20 to 38g suckling Sprague-Dawley rat pups and of 13 normal 5 to 12kg weanling Yorkshire piglets were irradiated with an array of parallel, synchrotron-wiggler-generated X-ray microbeams in doses overlapping the MRT-relevant range (about 50-600Gy) using the ID17 wiggler beamline tangential to the 6GeV electron synchrotron ring at the European Synchrotron Radiation Facility in Grenoble, France. Subsequent favourable development of most animals over at least 1 year suggests that MRT might be used to treat children's brain tumours with less risk to the development of the central nervous system than is presently the case when using wider beams.