11 resultados para neural systems
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Trust and betrayal of trust are ubiquitous in human societies. Recent behavioral evidence shows that the neuropeptide oxytocin increases trust among humans, thus offering a unique chance of gaining a deeper understanding of the neural mechanisms underlying trust and the adaptation to breach of trust. We examined the neural circuitry of trusting behavior by combining the intranasal, double-blind, administration of oxytocin with fMRI. We find that subjects in the oxytocin group show no change in their trusting behavior after they learned that their trust had been breached several times while subjects receiving placebo decrease their trust. This difference in trust adaptation is associated with a specific reduction in activation in the amygdala, the midbrain regions, and the dorsal striatum in subjects receiving oxytocin, suggesting that neural systems mediating fear processing (amygdala and midbrain regions) and behavioral adaptations to feedback information (dorsal striatum) modulate oxytocin's effect on trust. These findings may help to develop deeper insights into mental disorders such as social phobia and autism, which are characterized by persistent fear or avoidance of social interactions.
Resumo:
Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.
Resumo:
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Resumo:
Training a system to recognize handwritten words is a task that requires a large amount of data with their correct transcription. However, the creation of such a training set, including the generation of the ground truth, is tedious and costly. One way of reducing the high cost of labeled training data acquisition is to exploit unlabeled data, which can be gathered easily. Making use of both labeled and unlabeled data is known as semi-supervised learning. One of the most general versions of semi-supervised learning is self-training, where a recognizer iteratively retrains itself on its own output on new, unlabeled data. In this paper we propose to apply semi-supervised learning, and in particular self-training, to the problem of cursive, handwritten word recognition. The special focus of the paper is on retraining rules that define what data are actually being used in the retraining phase. In a series of experiments it is shown that the performance of a neural network based recognizer can be significantly improved through the use of unlabeled data and self-training if appropriate retraining rules are applied.
Resumo:
The vascular and the nervous system are responsible for oxygen, nutrient, and information transfer and thereby constitute highly important communication systems in higher organisms. These functional similarities are reflected at the anatomical, cellular, and molecular levels, where common developmental principles and mutual crosstalks have evolved to coordinate their action. This resemblance of the two systems at different levels of complexity has been termed the "neurovascular link." Most of the evidence demonstrating neurovascular interactions derives from studies outside the CNS and from the CNS tissue of the retina. However, little is known about the specific properties of the neurovascular link in the brain. Here, we focus on regulatory effects of molecules involved in the neurovascular link on angiogenesis in the periphery and in the brain and distinguish between general and CNS-specific cues for angiogenesis. Moreover, we discuss the emerging molecular interactions of these angiogenic cues with the VEGF-VEGFR-Delta-like ligand 4 (Dll4)-Jagged-Notch pathway.
Resumo:
Diet management is a key factor for the prevention and treatment of diet-related chronic diseases. Computer vision systems aim to provide automated food intake assessment using meal images. We propose a method for the recognition of already segmented food items in meal images. The method uses a 6-layer deep convolutional neural network to classify food image patches. For each food item, overlapping patches are extracted and classified and the class with the majority of votes is assigned to it. Experiments on a manually annotated dataset with 573 food items justified the choice of the involved components and proved the effectiveness of the proposed system yielding an overall accuracy of 84.9%.