4 resultados para neural source

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Localization is information of fundamental importance to carry out various tasks in the mobile robotic area. The exact degree of precision required in the localization depends on the nature of the task. The GPS provides global position estimation but is restricted to outdoor environments and has an inherent imprecision of a few meters. In indoor spaces, other sensors like lasers and cameras are commonly used for position estimation, but these require landmarks (or maps) in the environment and a fair amount of computation to process complex algorithms. These sensors also have a limited field of vision. Currently, Wireless Networks (WN) are widely available in indoor environments and can allow efficient global localization that requires relatively low computing resources. However, the inherent instability in the wireless signal prevents it from being used for very accurate position estimation. The growth in the number of Access Points (AP) increases the overlap signals areas and this could be a useful means of improving the precision of the localization. In this paper we evaluate the impact of the number of Access Points in mobile nodes localization using Artificial Neural Networks (ANN). We use three to eight APs as a source signal and show how the ANNs learn and generalize the data. Added to this, we evaluate the robustness of the ANNs and evaluate a heuristic to try to decrease the error in the localization. In order to validate our approach several ANNs topologies have been evaluated in experimental tests that were conducted with a mobile node in an indoor space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topic of this study was to evaluate state-dependent effects of diazepam on the frequency characteristics of 47-channel spontaneous EEG maps. A novel method, the FFT-Dipole-Approximation (Lehmann and Michel, 1990), was used to study effects on the strength and the topography of the maps in the different frequency bands. Map topography was characterized by the 3-dimensional location of the equivalent dipole source and map strength was defined as the spatial standard deviation (the Global Field Power) of the maps of each frequency point. The Global Field Power can be considered as a measure of the amount of energy produced by the system, while the source location gives an estimate of the center of gravity of all sources in the brain that were active at a certain frequency. State-dependency was studied by evaluating the drug effects before and after a continuous performance task of 25 min duration. Clear interactions between drug (diazepam vs. placebo) and time after drug intake (before and after the task) were found, especially in the inferior-superior location of the dipole sources. It supports the hypothesis that diazepam, like other drugs, has different effects on brain functions depending on the momentary functional state of the brain. In addition to the drug effects, clearly different source locations and Global Field Power were found for the different frequency bands, replicating earlier reports (Michel et al., 1992).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25±4.8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta–theta, alpha, and beta EEG frequency band, and for the full range (1.5–30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta–theta band, more posterior and more right for the alpha, beta and 1.5–30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.