12 resultados para network formation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intussusceptive angiogenesis is a novel mode of blood vessel formation and remodeling, which occurs by internal division of the preexisting capillary plexus without sprouting. In this study, the process is demonstrated in developing chicken eye vasculature and in the chorioallantoic membrane by methylmethacrylate (Mercox) casting, transmission electron microscopy, and in vivo observation. In a first step of intussusceptive angiogenesis, the capillary plexus expands by insertion of numerous transcapillary tissue pillars, ie, by intussusceptive microvascular growth. In a subsequent step, a vascular tree arises from the primitive capillary plexus as a result of intussusceptive pillar formation and pillar fusions, a process we termed "intussusceptive arborization." On the basis of the morphological observations, a 4-step model for intussusceptive arborization is proposed, as follows: phase I, numerous circular pillars are formed in rows, thus demarcating future vessels; phase II, formation of narrow tissue septa by pillar reshaping and pillar fusions; phase III, delineation, segregation, growth, and extraction of the new vascular entity by merging of septa; and phase IV, formation of new branching generations by successively repeating the process, complemented by growth and maturation of all components. In contrast to sprouting, intussusceptive angiogenesis does not require intense local endothelial cell proliferation; it is implemented primarily by rearrangement and attenuation of the endothelial cell plates. In summary, transcapillary pillar formation, ie, intussusception, is a central and probably widespread process, which plays a role not only in capillary network growth and expansion (intussusceptive microvascular growth), but also in vascular plexus remodeling and tree formation (intussusceptive arborization).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TIE2 is a vascular endothelial-specific receptor tyrosine kinase essential for the regulation of vascular network formation and remodeling. Previously, we have shown that the 1.2-kb 5' flanking region of the TIE2 promoter is capable of directing beta-galactosidase reporter gene expression specifically into a subset of endothelial cells (ECs) of transgenic mouse embryos. However, transgene activity was restricted to early embryonic stages and not detectable in adult mice. Herein we describe the identification and characterization of an autonomous endothelial-specific enhancer in the first intron of the mouse TIE2 gene. Furthermore, combination of the TIE2 promoter with an intron fragment containing this enhancer allows it to target reporter gene expression specifically and uniformly to virtually all vascular ECs throughout embryogenesis and adulthood. To our knowledge, this is the first time that an in vivo expression system has been assembled by which heterologous genes can be targeted exclusively to the ECs of the entire vasculature. This should be a valuable tool to address the function of genes during physiological and pathological processes of vascular ECs in vivo. Furthermore, we were able to identify a short region critical for enhancer function in vivo that contains putative binding sites for Ets-like transcription factors. This should, therefore, allow us to determine the molecular mechanisms underlying the vascular-EC-specific expression of the TIE2 gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. METHODS Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. RESULTS Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. CONCLUSION The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA-grafted supramolecular polymers (SPs) allow the programmed organization of DNA in a highly regular, one-dimensional array. Oligonucleotides are arranged along the edges of pyrene-based helical polymers. Addition of complementary oligonucleotides triggers the assembly of individual nanoribbons resulting in the development of extended supramolecular networks. Network formation is enabled by cooperative coaxial stacking interactions of terminal GC base pairs. The process is accompanied by structural changes in the pyrene polymer core that can be followed spectroscopically. Network formation is reversible, and disassembly into individual ribbons is realized either via thermal denaturation or by addition of a DNA separator strand.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As Social Network Sites (SNS) permeate our daily routines, the question whether participation results in value for SNS users becomes particularly acute. This study adopts a 'participation-source-outcome' perspective to explore how distinct uses of SNS generate various types of social capital benefits. Building on existing research, extensive qualitative findings and an empirical study with 253 Facebook users, we uncover the process of social capital formation on SNS. We find that even though active communication is an important prerequisite, it is the diversified network structure and the increased social connectedness that are responsible for the attainment of the four benefits of social capital on SNS: emotional support, networking value, horizon broadening and offline participation. Moreover, we propose and validate scales to measure social capital benefits in the novel context of SNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human lung is born with a fraction of the adult complement of alveoli. The postnatal stages of human lung development comprise an alveolar stage, a stage of microvascular maturation, and very likely a stage of late alveolarization. The characteristic structural features of the alveolar stage are well known; they are very alike in human and rat lungs. The bases for alveolar formation are represented by immature inter-airspace walls with two capillary layers with a central sheet of connective tissue. Interalveolar septa are formed by folding up of one of the two capillary layers. In the alveolar stage, alveolar formation occurs rapidly and is typically very conspicuous in both species; it has therefore been termed 'bulk alveolarization'. During and after alveolarization the septa with double capillary networks are restructured to the mature form with a single network. This happens in the stage of microvascular maturation. After these steps the lung proceeds to a phase of growth during which capillary growth by intussusception plays an important role in supporting gas exchange. In view of reports that alveoli are added after the stage of microvascular maturation, the question arises whether the present concept of alveolar formation needs revision. On the basis of morphological and experimental findings we can state that mature lungs contain all the features needed for 'late alveolarization' by the classical septation process. Because of the high plasticity of the lung tissues, late alveolarization or some forms of compensatory alveolar formation may be considered for the human lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Site-1 protease (S1P) has an essential function in the conversion of latent, membrane-bound transcription factors to their free, active form. In mammals, abundant expression of S1P in chondrocytes suggests an involvement in chondrocyte function. To determine the requirement of S1P in cartilage and bone development, we have created cartilage-specific S1P knockout mice (S1P(cko)). S1P(cko) mice exhibit chondrodysplasia and a complete lack of endochondral ossification even though Runx2 expression, Indian hedgehog signaling, and osteoblastogenesis is intact. However, there is a substantial increase in chondrocyte apoptosis in the cartilage of S1P(cko) mice. Extraction of type II collagen is substantially lower from S1P(cko) cartilage. In S1P(cko) mice, the collagen network is disorganized and collagen becomes entrapped in chondrocytes. Ultrastructural analysis reveals that the endoplasmic reticulum (ER) in S1P(cko) chondrocytes is engorged and fragmented in a manner characteristic of severe ER stress. These data suggest that S1P activity is necessary for a specialized ER stress response required by chondrocytes for the genesis of normal cartilage and thus endochondral ossification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The unsupervised categorization of sensory stimuli is typically attributed to feedforward processing in a hierarchy of cortical areas. This purely sensory-driven view of cortical processing, however, ignores any internal modulation, e.g., by top-down attentional signals or neuromodulator release. To isolate the role of internal signaling on category formation, we consider an unbroken continuum of stimuli without intrinsic category boundaries. We show that a competitive network, shaped by recurrent inhibition and endowed with Hebbian and homeostatic synaptic plasticity, can enforce stimulus categorization. The degree of competition is internally controlled by the neuronal gain and the strength of inhibition. Strong competition leads to the formation of many attracting network states, each being evoked by a distinct subset of stimuli and representing a category. Weak competition allows more neurons to be co-active, resulting in fewer but larger categories. We conclude that the granularity of cortical category formation, i.e., the number and size of emerging categories, is not simply determined by the richness of the stimulus environment, but rather by some global internal signal modulating the network dynamics. The model also explains the salient non-additivity of visual object representation observed in the monkey inferotemporal (IT) cortex. Furthermore, it offers an explanation of a previously observed, demand-dependent modulation of IT activity on a stimulus categorization task and of categorization-related cognitive deficits in schizophrenic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10(-20) to 10(-21) m(2) and a moderate anisotropy ratio < 10. Porosity depends on clay content and burial depth; values of similar to 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30 of voids can be classed as macropores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drillcores demonstrate that gas transport through the rock is accompanied by porewater displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macropores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gasfracs). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance.