6 resultados para net ecosystem production (NEP)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation phenology is an important indicator of climate change and climate variability and it is strongly connected to biospheric–atmospheric gas exchange. We aimed to evaluate the applicability of phenological information derived from digital imagery for the interpretation of CO2 exchange measurements. For the years 2005–2007 we analyzed seasonal phenological development of 2 temperate mixed forests using tower-based imagery from standard RGB cameras. Phenological information was jointly analyzed with gross primary productivity (GPP) derived from net ecosystem exchange data. Automated image analysis provided reliable information on vegetation developmental stages of beech and ash trees covering all seasons. A phenological index derived from image color values was strongly correlated with GPP, with a significant mean time lag of several days for ash trees and several weeks for beech trees in early summer (May to mid-July). Leaf emergence dates for the dominant tree species partly explained temporal behaviour of spring GPP but were also masked by local meteorological conditions. We conclude that digital cameras at flux measurement sites not only provide an objective measure of the physiological state of a forest canopy at high temporal and spatial resolutions, but also complement CO2 and water exchange measurements, improving our knowledge of ecosystem processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in marine net primary productivity (PP) and export of particulate organic carbon (EP) are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term measurements of CO2 flux can be obtained using the eddy covariance technique, but these datasets are affected by gaps which hinder the estimation of robust long-term means and annual ecosystem exchanges. We compare results obtained using three gap-fill techniques: multiple regression (MR), multiple imputation (MI), and artificial neural networks (ANNs), applied to a one-year dataset of hourly CO2 flux measurements collected in Lutjewad, over a flat agriculture area near the Wadden Sea dike in the north of the Netherlands. The dataset was separated in two subsets: a learning and a validation set. The performances of gap-filling techniques were analysed by calculating statistical criteria: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), maximum absolute error (MaxAE), and mean square bias (MSB). The gap-fill accuracy is seasonally dependent, with better results in cold seasons. The highest accuracy is obtained using ANN technique which is also less sensitive to environmental/seasonal conditions. We argue that filling gaps directly on measured CO2 fluxes is more advantageous than the common method of filling gaps on calculated net ecosystem change, because ANN is an empirical method and smaller scatter is expected when gap filling is applied directly to measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments1 places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond2, 3, 4. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise5, ocean acidification6, 7 and net primary production on land8, 9. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies10, climate sensitivity11 and carbon cycle feedbacks12, 13 along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community14, 15, 16, 17 to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To evaluate the climate sensitivity of model-based forest productivity estimates using a continental-scale tree-ring network. Location Europe and North Africa (30–70° N, 10° W–40° E). Methods We compiled close to 1000 annually resolved records of radial tree growth for all major European tree species and quantified changes in growth as a function of historical climatic variation. Sites were grouped using a neural network clustering technique to isolate spatiotemporal and species-specific climate response patterns. The resulting empirical climate sensitivities were compared with the sensitivities of net primary production (NPP) estimates derived from the ORCHIDEE-FM and LPJ-wsl dynamic global vegetation models (DGVMs). Results We found coherent biogeographic patterns in climate response that depend upon (1) phylogenetic controls and (2) ambient environmental conditions delineated by latitudinal/elevational location. Temperature controls dominate forest productivity in high-elevation and high-latitude areas whereas moisture sensitive sites are widespread at low elevation in central and southern Europe. DGVM simulations broadly reproduce the empirical patterns, but show less temperature sensitivity in the boreal zone and stronger precipitation sensitivity towards the mid-latitudes. Main conclusions Large-scale forest productivity is driven by monthly to seasonal climate controls, but our results emphasize species-specific growth patterns under comparable environmental conditions. Furthermore, we demonstrate that carry-over effects from the previous growing season can significantly influence tree growth, particularly in areas with harsh climatic conditions – an element not considered in most current-state DGVMs. Model–data discrepancies suggest that the simulated climate sensitivity of NPP will need refinement before carbon-cycle climate feedbacks can be accurately quantified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Research on ecosystem services has become a dominant field within environmental management, framing the way in which human–nature relationships are understood and managed. Although ecosystem services are usually defined as ‘the benefits that humans receive from nature’, our work shows that most services are actually co-produced by a mixture of natural capital and various forms of social, human, financial and technological capital. Here, we review how ecosystem services are co-produced, and then we assess how this affects the quantity, quality, trade-offs, resilience and the equity of the distribution of ecosystem services. Then we discuss the implications of co-production for sustainability. Finally, we present some challenges for an adequate consideration of co-production within the assessment of ecosystem services.