13 resultados para nestling
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Theoretical models of host-parasite coevolution assume a partially genetic basis to the variability in susceptibility to parasites among hosts, for instance as a result of genetic variation in immune function. However, few empirical data exist for free-living vertebrate hosts to support this presumption. In a cross-fostering experiment with nestling great tits, by comparing nestlings of the same origin we investigated (i) the variance in host resistance against an ectoparasite due to a common genetic origin, (ii) the effect of ectoparasite infestation on cell-mediated immunity and (iii) the variance in cell-mediated immunity due to a common genetic origin. Ectoparasitic hen fleas can impair the growth of nestling great tits and nestling growth was therefore taken as a measure of host susceptibility. A common origin did not account for a significant part of the variation in host susceptibility to fleas. There was no significant overall effect of fleas on nestling growth or cell-mediated immunity, as assessed by a cutaneous hypersensitivity response. A common rearing environment explained a significant part of the variation in cell-mediated immunity among nestlings, mainly through its effect on nestling body mass. The variation in cell-mediated immunity was also related to a common origin. However, the origin-related variation in body mass did not account for the origin-related differences in cell-mediated immunity. The results of the present study thus suggest heritable variation in cell-mediated immunity among nestling great tits. [References: 49]
Resumo:
1. Egg yolks contain carotenoids that protect biological molecules against free-radical damage and promote maturation of the immune system. Availability of carotenoids to birds is often limited. Trade-offs can thus arise in the allocation of carotenoids to different physiological functions, and mothers may influence the immunocompetence of nestlings by modulating the transfer of carotenoid to the yolk.;2. In the great tit Parus major, we experimentally manipulated the dietary supply of carotenoid to mothers, and partially cross-fostered hatchlings to investigate the effect of an increased availability of carotenoids during egg laying on immunocompetence of nestlings.;3. In addition, we infested half of the nests with hen fleas Ceratophyllus gallinae to investigate the relationship between carotenoid availability, resistance to ectoparasites and immunocompetence.;4. We found that the procedure of cross-fostering can reduce the immune response of nestlings, but this effect can be compensated by the maternally transferred carotenoids. Cross-fostered nestlings of carotenoid-supplemented females show a similar immune response to non-cross-fostered nestlings, while cross-fostered nestlings of control females mounted a weaker cell-mediated immune response. This suggests that yolk carotenoids may help nestlings to cope with stress, for example the one generated by cross-fostering and/or they may enhance nestling competitiveness.;5. There was no statistically significant interaction between parasite and carotenoid treatments, as would be expected if carotenoids helped nestlings to fight parasites. Under parasite pressure, however, lighter nestlings raised a lower immune response, while the immune response was only weakly correlated with body mass in uninfested nests.
Resumo:
Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.
Effect of sibling competition and male carotenoid supply on offspring condition and oxidative stress
Resumo:
Early developmental conditions have major implications for an individual's fitness. In species where offspring are born simultaneously, the level of sibling competition for food access is intense. In birds, high sibling competition may subject nestlings to decreased growth rate as a result of limited food and increased levels of oxidative stress through high metabolic activity induced by begging behaviors. We manipulated the level of sibling competition in a natural population of great tits and assessed the consequences for nestling body condition and resistance to oxidative stress. In a full factorial design, we both augmented brood size to increase sibling competition and supplemented the male parents with physiological doses of carotenoids thereby doubling the natural carotenoid intake, aiming at increasing the males' investment in current reproduction and thereby decreasing sibling competition. Nestling body mass was reduced by the brood enlargement and enhanced by the carotenoid supplementation of fathers. Nestling resistance to oxidative stress, measured as total antioxidant defenses in whole blood, was not influenced by the treatments. Because nestlings experience high metabolic activities, an absence of an effect of sibling competition on free radicals production seems unlikely. Nestling body mass decreased and resistance to oxidative stress tended to increase with initial brood size, and hence these correlational effects suggest a trade-off between morphological growth and development of the antioxidant system. However, the result of the experimental treatment did not support this trade-off hypothesis. Alternatively, it suggests that nestling developed compensatory mechanisms that were not detected by our antioxidant capacity measure.
Resumo:
Current theory proposes that nestlings beg to signal hunger level to parents honestly, or that siblings compete by escalating begging to attract the attention of parents. Although begging is assumed to be directed at parents, barn owl (Tyto alba) nestlings vocalize in the presence but also in the absence of the parents. Applying the theory of asymmetrical contests we experimentally tested three predictions of the novel hypothesis that in the absence of the parents siblings vocally settle contests over prey items to be delivered next by a parent. This 'sibling negotiation hypothesis' proposes that offspring use each others begging vocalization as a source of information about their relative willingness to contest the next prey item delivered. In line with the hypothesis we found that (i) a nestling barn owl refrains from vocalization when a rival is more hungry, but (ii) escalates once the rival has been fed by a parent, and (iii) nestlings refrain from and escalate vocalization in experimentally enlarged and reduced broods, respectively. Thus, when parents are not at the nest a nestling vocally refrains when the value of the next delivered prey item will be higher for its nest-mates. These findings are the exact opposite of what current models predict for begging calls produced in the presence of the parents. [References: 20]
Resumo:
Theory suggests that carotenoid-based signals are used in animal communication because they contain specific information about parasite resistance or immunocompetence. This implies that honesty of carotenoid-based signals is maintained by a trade-off between pigmentation and immune function for carotenoids, assuming that the carotenoids used for coloration are also immunoenhancing. We tested this hypothesis by altering the diets of nestling great tits (Paris major) with supplementary beadlets containing the carotenoids that are naturally ingested with food or beadlets containing the carotenoids that are incorporated into the feathers; a control group received beadlets containing no carotenoids. We simultaneously immune challenged half of the nestlings of each supplementation group, using a two-factorial design. Activatior of the immune system led to reduced color expression. However, only nestlings fed with the naturally ingested carotenoids and not with the carotenoids deposited in the feathers showed an increased cellular immune response. This shows that the carotenoids used for ornamentation do not promote the immune function, which conflicts with the trade-off hypothesis. Our results indicate that honesty of carotenoid-based signals is maintained by an individual's physiological limitation to absorb and/or transport carotenoids and by access to carotenoids, indicating that preferences for carotenoid-based traits in sexual selection or parent-offspring interactions select for competitive individuals, rather than specifically for immune function.
Resumo:
Sibling and parente-offspring conflicts arise mainly over the amount and distribution of parental care, especially food. In altricial bird species where the young depend on parents for obtaining food, parents may control sibling competition by the choice of their respective provisioning locations. In great tits, the parents use fixed provisioning positions on the nest rim that are determined early in the breeding cycle and maintained until. edging. The two parents may choose positions that are close to each other, or far apart, and thereby increase or relax the pressure for optimal feeding positioning among nestlings. As an inspiration to this study we previously found that the two parents provide food from closer positions if the nest is infested by ectoparasites. Here, we tested the hypothesis that the parental choice of relative provisioning locations could be strategically used to control nestling competition. We forced parents to feed from either one or two provisioning locations and assessed the induced change in nestling movement, weight gain, and food distribution among siblings. We show that the angular distance between male and female locations influences the level of behavioural competition and affects nestling weight gain and food distribution. It is the first evidence for hole-nesting birds, where it was assumed that the nestling closest to the entrance hole was fed first, that the apparent choice of feeding positions by parents could be a way of controlling sibling competition and thereby also taking partial control over the outcome of parente-offspring conflict. (c) 2007 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Both predators and parasites can elicit behavioral and physiological responses in prey and hosts, respectively. These responses may involve the reallocation of resources and may thus limit each other. We investigated the effects of concurrent pre-laying exposure of great tit females (Parus major) to both a simulated predation risk and a nest-based ectoparasite, the hen flea (Ceratophyllus gallinae), on nestling growth and development. We manipulated perceived predation risk using models and vocalizations of sparrowhawks (Accipiter nisus). At the start of incubation, we swapped whole clutches between treated and untreated nests to separate pre-laying maternal effects from posthatching effects. Since costs and benefits of maternal responses to parasites need to be assessed under parasite pressure, we infested half of the rearing nests with hen fleas. Parasites had negative effects on mass gain and wing growth, both via maternal effects and via direct exposure of nestlings, whereas maternal predation risk had no significant effect. The interaction between predator and parasite treatments was not significant and, thus, suggests the absence of a trade-off between the 2 stressors operating at the level of maternal effects. Alternatively, the complexity of the design, despite a relatively large sample size, may have limited the power for detection of this expected trade-off.
Resumo:
Acoustic signatures are common components of avian vocalizations and are important for the recognition of individuals and groups. The proximate mechanisms by which these signatures develop are poorly understood, however. The development of acoustic signatures in nestling birds is of particular interest, because high rates of extra-pair paternity or egg dumping can cause nestlings to be unrelated to at least one of the adults that are caring for them. In such cases, nestlings might conceal their genetic origins, by developing acoustic signatures through environmental rather than genetic mechanisms. In a cross-fostering experiment with tree swallows Tachycineta bicolor, we investigated whether brood signatures of nestlings that were about to fledge were attributable to their genetic/maternal origins or to their rearing environment. We found that the calls of cross-fostered nestlings did not vary based on their genetic/maternal origin, but did show some variation based on their rearing environment. Control nestlings that were not swapped, however, showed stronger brood signatures than either experimental group, suggesting that acoustic signatures develop through an interaction between rearing environment and genetic/maternal effects.