29 resultados para natural language understanding

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Written text is an important component in the process of knowledge acquisition and communication. Poorly written text fails to deliver clear ideas to the reader no matter how revolutionary and ground-breaking these ideas are. Providing text with good writing style is essential to transfer ideas smoothly. While we have sophisticated tools to check for stylistic problems in program code, we do not apply the same techniques for written text. In this paper we present TextLint, a rule-based tool to check for common style errors in natural language. TextLint provides a structural model of written text and an extensible rule-based checking mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Researchers suggest that personalization on the Semantic Web adds up to a Web 3.0 eventually. In this Web, personalized agents process and thus generate the biggest share of information rather than humans. In the sense of emergent semantics, which supplements traditional formal semantics of the Semantic Web, this is well conceivable. An emergent Semantic Web underlying fuzzy grassroots ontology can be accomplished through inducing knowledge from users' common parlance in mutual Web 2.0 interactions [1]. These ontologies can also be matched against existing Semantic Web ontologies, to create comprehensive top-level ontologies. On the Web, if augmented with information in the form of restrictions andassociated reliability (Z-numbers) [2], this collection of fuzzy ontologies constitutes an important basis for an implementation of Zadeh's restriction-centered theory of reasoning and computation (RRC) [3]. By considering real world's fuzziness, RRC differs from traditional approaches because it can handle restrictions described in natural language. A restriction is an answer to a question of the value of a variable such as the duration of an appointment. In addition to mathematically well-defined answers, RRC can likewise deal with unprecisiated answers as "about one hour." Inspired by mental functions, it constitutes an important basis to leverage present-day Web efforts to a natural Web 3.0. Based on natural language information, RRC may be accomplished with Z-number calculation to achieve a personalized Web reasoning and computation. Finally, through Web agents' understanding of natural language, they can react to humans more intuitively and thus generate and process information.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In his in uential article about the evolution of the Web, Berners-Lee [1] envisions a Semantic Web in which humans and computers alike are capable of understanding and processing information. This vision is yet to materialize. The main obstacle for the Semantic Web vision is that in today's Web meaning is rooted most often not in formal semantics, but in natural language and, in the sense of semiology, emerges not before interpretation and processing. Yet, an automated form of interpretation and processing can be tackled by precisiating raw natural language. To do that, Web agents extract fuzzy grassroots ontologies through induction from existing Web content. Inductive fuzzy grassroots ontologies thus constitute organically evolved knowledge bases that resemble automated gradual thesauri, which allow precisiating natural language [2]. The Web agents' underlying dynamic, self-organizing, and best-effort induction, enable a sub-syntactical bottom up learning of semiotic associations. Thus, knowledge is induced from the users' natural use of language in mutual Web interactions, and stored in a gradual, thesauri-like lexical-world knowledge database as a top-level ontology, eventually allowing a form of computing with words [3]. Since when computing with words the objects of computation are words, phrases and propositions drawn from natural languages, it proves to be a practical notion to yield emergent semantics for the Semantic Web. In the end, an improved understanding by computers on the one hand should upgrade human- computer interaction on the Web, and, on the other hand allow an initial version of human- intelligence amplification through the Web.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. The author focuses on the Social Web and possibilities of its integration with the Semantic Web as resource for a semi-automated tracking of online reputations using imprecise natural language terms. The inherent structure of natural language supports humans not only in communication but also in the perception of the world. Thereby fuzziness is a promising tool for transforming those human perceptions into computer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management. For readers interested in the cross-over field of computer science, information systems, and social sciences, this book is an ideal source for becoming acquainted with the evolving field of fuzzy online reputation management in the Social Semantic Web area. ​

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. This dissertation can be split into three parts: In the first part, possible fuzzy clustering applications for the Social Semantic Web are investigated. The second part explores promising Social Semantic Web elements for organizational applications,while in the third part the former two parts are brought together and a fuzzy online reputation analysis framework is introduced and evaluated. Theentire PhD thesis is based on literature reviews as well as on argumentative-deductive analyses.The possible applications of Social Semantic Web elements within organizations have been researched using a scenario and an additional case study together with two ancillary case studies—based on qualitative interviews. For the conception and implementation of the online reputation analysis application, a conceptual framework was developed. Employing test installations and prototyping, the essential parts of the framework have been implemented.By following a design sciences research approach, this PhD has created two artifacts: a frameworkand a prototype as proof of concept. Bothartifactshinge on twocoreelements: a (cluster analysis-based) translation of tags used in the Social Web to a computer-understandable fuzzy grassroots ontology for the Semantic Web, and a (Topic Maps-based) knowledge representation system, which facilitates a natural interaction with the fuzzy grassroots ontology. This is beneficial to the identification of unknown but essential Web data that could not be realized through conventional online reputation analysis. Theinherent structure of natural language supports humans not only in communication but also in the perception of the world. Fuzziness is a promising tool for transforming those human perceptions intocomputer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lexical items like and well can serve as discourse markers (DMs), but can also play numerous other roles, such as verb or adverb. Identifying the occurrences that function as DMs is an important step for language understanding by computers. In this study, automatic classifiers using lexical, prosodic/positional and sociolinguistic features are trained over transcribed dialogues, manually annotated with DM information. The resulting classifiers improve state-of-the-art performance of DM identification, at about 90% recall and 79% precision for like (84.5% accuracy, κ = 0.69), and 99% recall and 98% precision for well (97.5% accuracy, κ = 0.88). Automatic feature analysis shows that lexical collocations are the most reliable indicators, followed by prosodic/positional features, while sociolinguistic features are marginally useful for the identification of DM like and not useful for well. The differentiated processing of each type of DM improves classification accuracy, suggesting that these types should be treated individually.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a conceptual approach to enhance knowledge management by synchronizing mind maps and fuzzy cognitive maps. The use of mind maps allows taking advantage of human creativity, while the application of fuzzy cognitive maps enables to store information expressed in natural language. By applying cognitive computing, it makes possible to gather and extract relevant information out of a data pool. Therefore, this approach is supposed to give a framework that enhances knowledge management. To demonstrate the potential of this framework, a use case concerning the development of a smart city app is presented.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sustainable natural resource use requires that multiple actors reassess their situation in a systemic perspective. This can be conceptualised as a social learning process between actors from rural communities and the experts from outside organisations. A specifically designed workshop oriented towards a systemic view of natural resource use and the enhancement of mutual learning between local and external actors, provided the background for evaluating the potentials and constraints of intensified social learning processes. Case studies in rural communities in India, Bolivia, Peru and Mali showed that changes in the narratives of the participants of the workshop followed a similar temporal sequence relatively independently from their specific contexts. Social learning processes were found to be more likely to be successful if they 1) opened new space for communicative action, allowing for an intersubjective re-definition of the present situation, 2) contributed to rebalance the relationships between social capital and social, emotional and cognitive competencies within and between local and external actors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wolff, E. W.; Harrison, S. P.; Knutti, R.; Sanchez-Goñi, M. F.; Wild, O.; Danlau, A.-L.; Masson-Delmotte, V.; Prentice, I. C.; Spahni, R.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The epidemiology of wheeze in children, when assessed by questionnaires, is dependent on parents' understanding of the term "wheeze". In a questionnaire survey of a random population sample of 4,236 children aged 6-10 yrs, parents' definition of wheeze was assessed. Predictors of a correct definition were determined and the potential impact of incorrect answers on prevalence estimates from the survey was assessed. Current wheeze was reported by 13.2% of children. Overall, 83.5% of parents correctly identified "whistling or squeaking" as the definition of wheeze; the proportion was higher for parents reporting wheezy children (90.4%). Frequent attacks of reported wheeze (adjusted odds ratio (OR) 3.0), maternal history of asthma (OR 1.5) and maternal education (OR 1.5) were significantly associated with a correct answer, while the converse was found for South Asian ethnicity (OR 0.6), first language not English (OR 0.6) and living in a deprived neighbourhood (OR 0.6). In summary, the present study showed that misunderstanding could lead to an important bias in assessing the prevalence of wheeze, resulting in an underestimation in children from South Asian and deprived family backgrounds. Prevalence estimates for the most severe categories of wheeze might be less affected by this bias and questionnaire surveys on wheeze should incorporate measures of parents' understanding of the term wheeze.