6 resultados para nanotechnologies

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell therapies have gained increasing interest and developed in several approaches related to the treatment of damaged myocardium. The results of multiple clinical trials have already been reported, almost exclusively involving the direct injection of stem cells. It has, however, been postulated that the efficiency of injected cells could possibly be hindered by the mechanical trauma due to the injection and their low survival in the hostile environment. It has indeed been demonstrated that cell mortality due to the injection approaches 90%. Major issues still need to be resolved and bed-to-bench followup is paramount to foster clinical implementations. The tissue engineering approach thus constitutes an attractive alternative since it provides the opportunity to deliver a large number of cells that are already organized in an extracellular matrix. Recent laboratory reports confirmed the interest of this approach and already encouraged a few groups to investigate it in clinical studies. We discuss current knowledge regarding engineered tissue for myocardial repair or replacement and in particular the recent implementation of nanotechnological approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stem cells reside within tissue, ensuring its natural ability to repair an injury. They are involved in the natural repair of damaged tissue, which encompasses a complex process requiring the modulation of cell survival, extracellular matrix turnover, angiogenesis, and reverse remodeling. To date, the real reparative potential of each tissue is underestimated and noncommittal. The assessment of the biophysical properties of the extracellular environment is an innovative approach to better understand mechanisms underlying stem cell function, and consequently to develop safe and effective therapeutic strategies replacing the loss of tissue. Recent studies have focused on the role played by biomechanical signals that drive stem cell death, differentiation, and paracrinicity in a genetic and/or an epigenetic manner. Mechanical stimuli acting on the shape can influence the biochemistry and gene expression of resident stem cells and, therefore, the magnitude of biological responses that promote the healing of injured tissue. Nanotechnologies have proven to be a revolutionary tool capable of dissecting the cellular mechanosensing apparatus, allowing the intercellular cross-talk to be decoded and enabling the reparative potential of tissue to be enhanced without manipulation of stem cells. This review highlights the most relevant findings of stem cell mechanobiology and presents a fascinating perspective in regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During development and regeneration of the mammalian nervous system, directional signals guide differentiating neurons toward their targets. Soluble neurotrophic molecules encode for preferential direction over long distances while the local topography is read by cells in a process requiring the establishment of focal adhesions. The mutual interaction between overlapping molecular and topographical signals introduces an additional level of control to this picture. The role of the substrate topography was demonstrated exploiting nanotechnologies to generate biomimetic scaffolds that control both the polarity of differentiating neurons and the alignment of their neurites. Here PC12 cells contacting nanogratings made of copolymer 2-norbornene ethylene (COC), were alternatively stimulated with Nerve Growth Factor, Forskolin, and 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic (8CPT-2Me-cAMP) or with a combination of them. Topographical guidance was differently modulated by the alternative stimulation protocols tested. Forskolin stimulation reduced the efficiency of neurite alignment to the nanogratings. This effect was linked to the inhibition of focal adhesion maturation. Modulation of neurite alignment and focal adhesion maturation upon Forskolin stimulation depended on the activation of the MEK/ERK signaling but were PkA independent. Altogether, our results demonstrate that topographical guidance in PC12 cells is modulated by the activation of alternative neuronal differentiation pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of nanomaterials is being discussed at various levels. This article offers a historical description of governmental activities concerning the safety of nanomaterials at the United Nations (UN) level since 2006, with a focus on the UN Strategic Approach to International Chemicals Management (SAICM). The outcomes of the SAICM process were a nanospecific resolution and the addition of new activities on nanotechnologies and manufactured nanomaterials to the SAICM’s Global Plan of Action. The article discusses the implications of these decisions for multilateral environmental agreements. In addition, it studies the consequences of the regulation of nanotechnologies activities on trade governance, in particular the relationship between the SAICM to the legally binding World Trade Organization (WTO) agreements (notably the General Agreement on Tariffs and Trade and the Agreement on Technical Barriers to Trade). The article concludes that the SAICM decisions on manufactured nanomaterials are compatible with WTO law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of nanomaterials is being discussed at various levels. This article offers a historical description of governmental activities concerning the safety of nanomaterials at the United Nations (UN) level since 2006, with a focus on the UN Strategic Approach to International Chemicals Management (SAICM). The outcomes of the SAICM process were a nanospecific resolution and the addition of new activities on nanotechnologies and manufactured nanomaterials to the SAICM’s Global Plan of Action. The article discusses the implications of these decisions for multilateral environmental agreements. In addition, it studies the consequences of the regulation of nanotechnologies activities on trade governance, in particular the relationship between the SAICM to the legally binding World Trade Organization (WTO) agreements (notably the General Agreement on Tariffs and Trade and the Agreement on Technical Barriers to Trade). The article concludes that the SAICM decisions on manufactured nanomaterials are compatible with WTO law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the concerns that the patenting activity in the new nanotechnologies could blur the line between what is considered a discovery and what can be considered as an invention. We find that the nature of nanotechnology products, research, and the development agendas in science and engineering fields that include biomimetics pose a challenge to the present practice of including chemicals as eligible patent subject matter. After revisiting the historical development of patent law and noting its divergence from the developments in science and technology, we introduce the distinction between simple and complex machines as these relate to chemistry and nanotechnology. This distinction poses the question of what is the logical category of inventions that fall within patentable subject matter given that patent law was conceived to cover simple machines, not complex ones.