19 resultados para muscle tissues

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylation of cytosine residues at CpG sites is involved in various biological processes to control gene regulation and gene expression. Global DNA methylation is changed in different tumors and in cloned animals. Global DNA methylation can be accurately quantified by dot blot analysis with infrared (IR) fluorophores. Methylated lambda DNA was used as model DNA to develop and validate an immunochemical assay with IR fluorescence detection. Two different IR fluorophores were used, one to detect 5-methylcytosine and another to account for DNA loading. A sensitive infrared detection method was established which is suitable for accurate and reproducible quantification of global DNA methylation across a wide dynamic range. This method was subsequently employed to quantify global DNA methylation in liver and in muscle tissues of boars which have received either a control diet or a methyl supplemented diet in an ongoing study. A significant difference in global DNA methylation is indicated in muscle but not in liver tissue between the two groups of boars.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BPAG1-b is the major muscle-specific isoform encoded by the dystonin gene, which expresses various protein isoforms belonging to the plakin protein family with complex, tissue-specific expression profiles. Recent observations in mice with either engineered or spontaneous mutations in the dystonin gene indicate that BPAG1-b serves as a cytolinker important for the establishment and maintenance of the cytoarchitecture and integrity of striated muscle. Here, we studied in detail its distribution in skeletal and cardiac muscles and assessed potential binding partners. BPAG1-b was detectable in vitro and in vivo as a high molecular mass protein in striated and heart muscle cells, co-localizing with the sarcomeric Z-disc protein alpha-actinin-2 and partially with the cytolinker plectin as well as with the intermediate filament protein desmin. Ultrastructurally, like alpha-actinin-2, BPAG1-b was predominantly localized at the Z-discs, adjacent to desmin-containing structures. BPAG1-b was able to form complexes with both plectin and alpha-actinin-2, and its NH(2)-terminus, which contains an actin-binding domain, directly interacted with that of plectin and alpha-actinin. Moreover, the protein level of BPAG1-b was reduced in muscle tissues from plectin-null mutant mice versus wild-type mice. These studies provide new insights into the role of BPAG1-b in the cytoskeletal organization of striated muscle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Muscarinic acetylcholine (M) and adrenergic (AR) receptors mediate gastrointestinal motility. Using radioligand binding assays and real-time polymerase chain reaction, the densities of binding sites and mRNA levels of M(2), M(3), alpha(2AD)- and beta(2)-AR were compared in muscle tissues from the abomasal fundus, pylorus, duodenum, caecum, and external loop of the spiral colon of eight cows with left displacement of abomasum (LDA), and of eight healthy cows. Specific binding of the [(3)H]-ligands to each of the four receptors was competitive and saturable. Binding sites of M(2) (all intestinal sites), M(3) (duodenum and caecum), and of alpha(2AD)-AR (abomasal fundus) were lower (P<0.05) in cows with LDA than in healthy cows. The coefficients of correlation between binding sites and mRNA transcripts of receptors were dissimilar in cows with LDA and healthy cows. The decrease in densities of M (intestine) and of alpha(2AD)-AR (abomasum) receptors suggests their implication in the impairment of motility associated with or leading to LDA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Acetylcholine interacts with muscarinic receptors (M) to mediate gastrointestinal (GI) smooth muscle contractions. We have compared mRNA levels and binding sites of M(1)to M(5) in muscle tissues from fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows. The mRNA levels were measured by quantitative RT-PCR. The inhibition of [(3)H]-QNB (1-quinuclidinyl-[phenyl-4-(3)H]-benzilate) binding by M antagonists [atropine (M(1 - 5)), pirenzepine (M(1)), methoctramine (M(2)), 4-DAMP (M(3)), and tropicamide (M(4))] was used to identify receptors at the functional level. Maximal binding (B(max)) was determined through saturation binding with atropine as a competitor. The mRNA levels of M(1), M(2), M(3), and M(5) represented 0.2, 48, 50, and 1.8%, respectively, of the total M population, whereas mRNA of M(4) was undetectable. The mRNA levels of M(2) and of M(3) in the ileum were lower (P < 0.05) than in other GI locations, which were similar among each other. Atropine, pirenzepine, methoctramine, and 4-DAMP inhibited [(3)H]-QNB binding according to an either low- or high-affinity receptor pattern, whereas tropicamide had no effect on [(3)H]-QNB binding. The [(3)H]-QNB binding was dose-dependent and saturable. B(max) in fundus, pylorus, and PLAC was lower (P < 0.05) than in the ELSC, and in the pylorus lower (P < 0.05) than in the ileum. B(max) and mRNA levels were negatively correlated (r = -0.3; P < 0.05). In conclusion, densities of M are different among GI locations, suggesting variable importance of M for digestive functions along the GI tract.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut + gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑ 28PAHs in muscle tissues averaged 192 ng g− 1 dw (range: 71–481 ng g− 1 dw) and were not statistically different between locations. The concentrations of ∑ 28 PAHs were higher in guts + gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1 × 10− 6. The concentrations of ∑ 15 OPAHs in fish muscles averaged 422 ng g− 1 dw (range: 28–1715 ng g− 1dw). The ∑ 15 OPAHs/∑ 16 US-EPA PAHs concentration ratio was > 1 in 68% of the fish muscles and 100% of guts + gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts + gills were significantly (p < 0.05) correlated with their octanol–water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts + gills than in muscle tissues. The target hazard quotients for metals were < 1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the expression of the 5-hydroxytryptamine 4 (5-HT4) receptor subtype and investigate the modulating function of those receptors on contractility in intestinal tissues obtained from horses without gastrointestinal tract disease. SAMPLE POPULATION: Smooth muscle preparations from the duodenum, ileum, and pelvic flexure collected immediately after slaughter of 24 horses with no history or signs of gastrointestinal tract disease. PROCEDURES: In isometric organ baths, the contractile activities of smooth muscle preparations in response to 5-hydroxytryptamine and electric field stimulation were assessed; the effect of tegaserod alone or in combination with 5-hydroxytryptamine on contractility of intestinal specimens was also investigated. Presence and distribution of 5-HT4 receptors in intestinal tissues and localization on interstitial cells of Cajal were examined by use of an immunofluorescence technique. RESULTS: Widespread 5-HT4 receptor immunoreactivity was observed in all intestinal smooth muscle layers; 5-HT4 receptors were absent from the myenteric plexus and interstitial cells of Cajal. In electrical field-stimulated tissue preparations of duodenum and pelvic flexure, tegaserod increased the amplitude of smooth muscle contractions in a concentration-dependent manner. Preincubation with tegaserod significantly decreased the basal tone of the 5-HT-evoked contractility in small intestine specimens, compared with the effect of 5-HT alone, thereby confirming that tegaserod was acting as a partial agonist. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, 5-HT4 receptors on smooth muscle cells appear to be involved in the contractile response of the intestinal tract to 5-hydroxytryptamine. Results suggest that tegaserod may be useful for treatment of reduced gastrointestinal tract motility in horses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Sepsis may impair mitochondrial utilization of oxygen. Since hepatic dysfunction is a hallmark of sepsis, we hypothesized that the liver is more susceptible to mitochondrial dysfunction than the peripheral tissues, such as the skeletal muscle. We studied the effect of prolonged endotoxin infusion on liver, muscle and kidney mitochondrial respiration and on hepatosplanchnic oxygen transport and microcirculation in pigs. METHODS: 20 anesthetized pigs were randomized to receive endotoxin or saline infusion for 24 hours. Muscle, liver and kidney mitochondrial respiration was assessed. Cardiac output (thermodilution), carotid, superior mesenteric and kidney arterial, portal venous (ultrasound Doppler) and microcirculatory blood flow (laser Doppler) were measured, and systemic and regional oxygen transport and lactate exchange were calculated. RESULTS: Endotoxin infusion induced hyperdynamic shock and impaired the glutamate- and succinate-dependent mitochondrial respiratory control ratio (RCR) in the liver (glutamate: endotoxemia: median [range] 2.8 [2.3-3.8] vs. controls: 5.3 [3.8-7.0]; p<0.001; succinate: endotoxemia: 2.9 [1.9-4.3] vs. controls: 3.9 [2.6-6.3] p=0.003). While the ADP:O ratio was reduced with both substrates, maximal ATP production was impaired only in the succinate-dependent respiration. Hepatic oxygen consumption and extraction, and liver surface laser Doppler blood flow remained unchanged. Glutamate-dependent respiration in the muscle and kidney was unaffected. CONCLUSIONS: Endotoxemia reduces the efficiency of hepatic but neither skeletal muscle nor kidney mitochondrial respiration, independent of regional and microcirculatory blood flow changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In forensic autopsies, one of the most important and common signs of violence to the neck is hemorrhages of the soft tissues. The Institute of Forensic Medicine in Bern evaluates the usefulness of postmortem multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) of forensic cases prior to autopsy. The aim of this study was to prove the sensitivity of postmortem MSCT and MRI in the detection of hemorrhages of the neck muscles. A full body scan prior to and a detailed scan of the explanted larynx after autopsy were performed. MSCT detected multiple fractures of the larynx. Detailed MRI was able to demonstrate the hemorrhage of the left posterior cricoarytenoid muscle. The minor hemorrhage of the right posterior cricoarytenoid muscle could not be detected with certainty. Although more experience is required, we conclude that combined MRI and MSCT examination is a useful tool for documentation and examination of neck muscle hemorrhages in forensic cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contractile tissues demonstrate a pronounced capacity to remodel their composition in response to mechanical challenges. Descriptive evidence suggests the upstream involvement of the phosphotransfer enzyme FAK (focal adhesion kinase) in the molecular control of load-dependent muscle plasticity. Thereby FAK evolves as a myocellular transducer of mechanical signals towards downstream transcript expression in myofibres. Recent advances in somatic gene therapy now allow the exploration of the functional involvement of this enzyme in mechanotransduction in intact muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate mechanisms by which angiotensin converting enzyme (ACE)-inhibition increases insulin sensitivity, spontaneously hypertensive (SH) rats were treated with or without ramipril (1 mg/kg per day) for 12 weeks. Insulin binding and protein levels of insulin receptor substrate-1 (IRS-1), p85-subunit of phosphatidylinositol 3'-kinase (p85) and Src homology 2 domain-containing phosphatase-2 (SHP2) were then determined in hindlimb muscle and liver. Additionally, protein tyrosine phosphatase (PTPase) activities towards immobilized phosphorylated insulin receptor or phosphorylated IRS-1 of membrane (MF) and cytosolic fractions (CF) of these tissues were measured. Ramipril treatment increased IRS-1-protein content in muscle by 31+/-9% (P<0.05). No effects were observed on IRS-1 content in liver or on insulin binding or protein expression of p85 or SHP2 in both tissues. Ramipril treatment also increased dephosphorylation of insulin receptor by muscle CF (22.0+/-1.0%/60 min compared to 16.8+/-1.5%/60 min; P<0.05), and of IRS-1 by liver MF (37.2+/-1.7%/7.5 min compared to 33.8+/-1.7%/7.5 min; P<0.05) and CF (36.8+/-1.0%/7.5 min compared to 33.2+/-1.0%/7.5 min; P<0.05). We conclude that the observed effects of ACE-inhibition by ramipril on the protein expression of IRS-1 and on PTPase activity might contribute to its effect on insulin sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.