4 resultados para multiple stressors

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquatic ecosystems are confronted with multiple stress factors. Current approaches to assess the risk of anthropogenic stressors to aquatic ecosystems are developed for single stressors and determine stressor effects primarily as a function of stressor properties. The cumulative impact of several stressors, however, may differ markedly from the impact of the single stressors and can result in nonlinear effects and ecological surprises. To meet the challenge of diagnosing and predicting multiple stressor impacts, assessment strategies should focus on properties of the biological receptors rather than on stressor properties. This change of paradigm is required because (i) multiple stressors affect multiple biological targets at multiple organizational levels, (ii) biological receptors differ in their sensitivities, vulnerabilities, and response dynamics to the individual stressors, and (iii) biological receptors function as networks, so that actions of stressors at disparate sites within the network can lead via indirect or cascading effects, to unexpected outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of plausible causes for water body status deterioration will be much easier if it can build on available, reliable, extensive and comprehensive biogeochemical monitoring data (preferably aggregated in a database). A plausible identification of such causes is a prerequisite for well-informed decisions on which mitigation or remediation measures to take. In this chapter, first a rationale for an extended monitoring programme is provided; it is then compared to the one required by the Water Framework Directive (WFD). This proposal includes a list of relevant parameters that are needed for an integrated, a priori status assessment. Secondly, a few sophisticated statistical tools are described that subsequently allow for the estiation of the magnitude of impairment as well as the likely relative importance of different stressors in a multiple stressed environment. The advantages and restrictions of these rather complicated analytical methods are discussed. Finally, the use of Decision Support Systems (DSS) is advocated with regard to the specific WFD implementation requirements.