13 resultados para multi-plant

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The majority of plant species rely, at least partly, on animals for pollination. Our knowledge on whether pollinator visitation differs between native and alien plant species, and between invasive and non-invasive alien species is still limited. Additionally, because numerous invasive plant species are escapees from horticulture, the transition from human-assisted occurrence in urbanized habitats to unassisted persistence and spread in (semi-)natural habitats requires study. To address whether pollinator visitation differs between native, invasive alien and non-invasive alien species, we did pollinator observations for a total of 17 plant species representing five plant families. To test whether pollinator visitation to the three groups of species during the initial stage of invasion depends on habitat type, we did the study in three urbanized habitats and three semi-natural grasslands, using single potted plants. Native plants had more but smaller flower units than alien plants, and invasive alien plants had more but smaller flowers than non-invasive alien plants. After accounting for these differences in floral display, pollinator visitation was higher for native than for alien plant species, but did not differ between invasive and non-invasive alien plant species. Pollinator visitation was on average higher in semi-natural than in urbanized habitats, irrespective of origin or status of the plant species. This might suggest that once an alien species has managed to escape from urbanized into more natural habitats, pollinator limitation will not be a major barrier to establishment and invasion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the first 7500 yr long multi-proxy record from a raised bog located at the southern Baltic coast, Poland. Testate amoebae, plant macrofossils, pollen and microscopic charcoal were used to reconstruct environmental changes in Pomerania (northern Poland, Kaszuby Lakeland) from a 7-m thick peat archive of Stążki bog dated 5500 BC–AD 1250. We obtained a record of proxies representing different spatial scales: regional vegetation changed simultaneously with local vegetation, and testate amoebae showed a pattern of change similar to that of pollen and plant macrofossils. On the basis of the combined proxies, we distinguished three hydroclimatic stages: moist conditions 5500–3450 BC, drier conditions with regionally increased fires up to 600 BC, and again moist conditions from 600 BC onward. During the drier interval, a first climatic shift to wetter conditions at 1700 BC is indicated by regional pollen as the replacement of Corylus by Carpinus, and locally by, e.g., the increase of Hyalosphenia elegans and mire plants such as Sphagnum sec. Cuspidata. Furthermore, we observed a correlation since 600 BC among the re-expansion of Carpinus (after a sudden decline ca. 950 BC), increased peat accumulation, increase of Hyalosphenia species, and fewer fires, suggesting lower evapotranspiration and a stable high water table in the bog. Fagus started to expand after AD 810 gradually replacing Carpinus, which was possibly due to a gradually more oceanic climate, though we cannot exclude human impact on the forests. Peat accumulation, determined by radiocarbon dating, varied with bog surface wetness. The hydroclimatic phases found in Stążki peatland are similar to moisture changes recorded in other sites from Poland and Europe. This is the first detailed record of hydroclimatic change during the Holocene in the southern Baltic region, so it forms a reference site for further studies on other southern Baltic bogs that are in progress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peatlands are widely exploited archives of paleoenvironmental change. We developed and compared multiple transfer functions to infer peatland depth to the water table (DWT) and pH based on testate amoeba (percentages, or presence/absence), bryophyte presence/absence, and vascular plant presence/absence data from sub-alpine peatlands in the SE Swiss Alps in order to 1) compare the performance of single-proxy vs. multi-proxy models and 2) assess the performance of presence/absence models. Bootstrapping cross-validation showing the best performing single-proxy transfer functions for both DWT and pH were those based on bryophytes. The best performing transfer functions overall for DWT were those based on combined testate amoebae percentages, bryophytes and vascular plants; and, for pH, those based on testate amoebae and bryophytes. The comparison of DWT and pH inferred from testate amoeba percentages and presence/absence data showed similar general patterns but differences in the magnitude and timing of some shifts. These results show new directions for paleoenvironmental research, 1) suggesting that it is possible to build good-performing transfer functions using presence/absence data, although with some loss of accuracy, and 2) supporting the idea that multi-proxy inference models may improve paleoecological reconstruction. The performance of multi-proxy and single-proxy transfer functions should be further compared in paleoecological data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peat deposits from an ombrotrophic bog (north-eastern Poland) were analysed to reconstruct peatland development and environmental changes. This paper presents reconstructions of hydrological changes and plant succession over the last 6000 years. The methods included the high-resolution analysis of plant macrofossils, pollen and testate amoebae, supported by radiocarbon dating. Three main phases were identified in the history of the bog and surrounding woodland vegetation: 4000–400 BC, 400 BC–AD 1700 and AD 1700–2011. Except for terrestrialisation and the fen-to-bog transition phase, the development of bog vegetation was mainly dependent on the climate until approximately AD 1700. The dominant taxon in Gązwa bog was Sphagnum fuscum/rubellum. Woodland development was significantly affected by human activity at several time periods. The most visible human activity, manifested by the decline of deciduous species, occurred ca. 350 BC, ca. AD 250, ca. AD 1350 and after AD 1700. These events correspond to phases of human settlement in the area. During 400–300 BC, the decline of deciduous trees, primarily Carpinus, coincided with an increase in indicators of human activity and fire frequency. At ca. AD 200, Carpinus and Tilia abundance decreased, corresponding to an increased importance of cereals (Secale and Triticum). Since ca. AD 1350, the impact of Teutonic settlement is apparent, and after AD 1700, deciduous forests largely disappeared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A major task in ecology is to establish the degree of generality of ecological mechanisms. Here we present results from a multi-species experiment that tested whether a set of invasive species altered the soil conditions to the detriment of other species by releasing allelopathic compounds or inducing shifts in soil biota composition, and whether this effect was more pronounced relative to a set of closely related native species. We pre-cultivated soil with 23 exotic invasive, 19 related native and 6 related exotic garden species and used plain soil as a control. To separate allelopathy from effects on the soil biota, we sterilized half of the soil. Then, we compared the effect of soil pre-cultivation and sterilization on germination and growth of four native test species in two experiments. The general effect of soil sterilization was positive. The effect of soil pre-cultivation on test species performance was neutral to positive, and sterilization reduced this positive effect. This indicates general absence of allelopathic compounds and a shift toward a less antagonistic soil biota by cultivation species. In both experiments, pre-cultivation effects did not differ systematically between exotic invasive, exotic garden or native species. Our results do not support the hypothesis that invasive plants generally inhibit the growth of others by releasing allelopathic compounds or accumulating a detrimental soil biota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Species diversity and genetic diversity may be affected in parallel by similar environmental drivers. However, genetic diversity may also be affected independently by habitat characteristics. We aim at disentangling relationships between genetic diversity, species diversity and habitat characteristics of woody species in subtropical forest. Methods: We studied 11 dominant tree and shrub species in 27 plots in Gutianshan, China, and assessed their genetic diversity (Ar) and population differentiation (F’ST) with microsatellite markers. We tested if Ar and population specific F’ST were correlated to local species diversity and plot characteristics. Multi-model inference and model averaging were used to determine the relative importance of each predictor. Additionally we tested for isolation-by-distance and isolation-by-elevation by regressing pairwise F’ST against pairwise spatial and elevational distances. Important findings: Genetic diversity was not related to species diversity for any of the study species. Thus, our results do not support joint effects of habitat characteristics on these two levels of biodiversity. Instead, genetic diversity in two understory shrubs, Rhododendron simsii and Vaccinium carlesii, was affected by plot age with decreasing genetic diversity in successionally older plots. Population differentiation increased with plot age in Rhododendron simsii and Lithocarpus glaber. This shows that succession can reduce genetic diversity within, and increase genetic diversity between populations. Furthermore, we found four cases of isolation-by-distance and two cases of isolation-by-elevation. The former indicates inefficient pollen and seed dispersal by animals whereas the latter might be due to phenological asynchronies. These patterns indicate that succession can affect genetic diversity without parallel effects on species diversity and that gene flow in a continuous subtropical forest can be restricted even at a local scale.