13 resultados para multi-modal microstructure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we propose a variational approach for multimodal image registration based on the diffeomorphic demons algorithm. Diffeomorphic demons has proven to be a robust and efficient way for intensity-based image registration. However, the main drawback is that it cannot deal with multiple modalities. We propose to replace the standard demons similarity metric (image intensity differences) by point-wise mutual information (PMI) in the energy function. By comparing the accuracy between our PMI based diffeomorphic demons and the B-Spline based free-form deformation approach (FFD) on simulated deformations, we show the proposed algorithm performs significantly better.
Resumo:
In the present multi-modal study we aimed to investigate the role of visual exploration in relation to the neuronal activity and performance during visuospatial processing. To this end, event related functional magnetic resonance imaging er-fMRI was combined with simultaneous eye tracking recording and transcranial magnetic stimulation (TMS). Two groups of twenty healthy subjects each performed an angle discrimination task with different levels of difficulty during er-fMRI. The number of fixations as a measure of visual exploration effort was chosen to predict blood oxygen level-dependent (BOLD) signal changes using the general linear model (GLM). Without TMS, a positive linear relationship between the visual exploration effort and the BOLD signal was found in a bilateral fronto-parietal cortical network, indicating that these regions reflect the increased number of fixations and the higher brain activity due to higher task demands. Furthermore, the relationship found between the number of fixations and the performance demonstrates the relevance of visual exploration for visuospatial task solving. In the TMS group, offline theta bursts TMS (TBS) was applied over the right posterior parietal cortex (PPC) before the fMRI experiment started. Compared to controls, TBS led to a reduced correlation between visual exploration and BOLD signal change in regions of the fronto-parietal network of the right hemisphere, indicating a disruption of the network. In contrast, an increased correlation was found in regions of the left hemisphere, suggesting an intent to compensate functionality of the disturbed areas. TBS led to fewer fixations and faster response time while keeping accuracy at the same level, indicating that subjects explored more than actually needed.
Resumo:
During the last decade, a multi-modal approach has been established in human experimental pain research for assessing pain thresholds and responses to various experimental pain modalities. Studies have concluded that differences in responses to pain stimuli are mainly related to variation between individuals rather than variation in response to different stimulus modalities. In a factor analysis of 272 consecutive volunteers (137 men and 135 women) who underwent tests with different experimental pain modalities, it was determined whether responses to different pain modalities represent distinct individual uncorrelated dimensions of pain perception. Volunteers underwent single painful electrical stimulation, repeated painful electrical stimulation (temporal summation), test for reflex receptive field, pressure pain stimulation, heat pain stimulation, cold pain stimulation, and a cold pressor test (ice water test). Five distinct factors were found representing responses to 5 distinct experimental pain modalities: pressure, heat, cold, electrical stimulation, and reflex-receptive fields. Each of the factors explained approximately 8% to 35% of the observed variance, and the 5 factors cumulatively explained 94% of the variance. The correlation between the 5 factors was near null (median ρ=0.00, range -0.03 to 0.05), with 95% confidence intervals for pairwise correlations between 2 factors excluding any relevant correlation. Results were almost similar for analyses stratified according to gender and age. Responses to different experimental pain modalities represent different specific dimensions and should be assessed in combination in future pharmacological and clinical studies to represent the complexity of nociception and pain experience.
Resumo:
BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.
Resumo:
The purpose of this article is to extend the organizational development diagnostics repertoire by advancing an approach that surfaces organizational identity beliefs through the elicitation of complex, multimodal metaphors by organizational members. We illustrate the use of such "Type IV" metaphors in a postmerger context, in which individuals sought to make sense of the implications of the merger process for the identity of their organization. This approach contributes to both constructive and discursive new organizational development approaches; and offers a multimodal way of researching organizational identity that goes beyond the dominant, mainly textual modality.
Resumo:
We propose an innovative, integrated, cost-effective health system to combat major non-communicable diseases (NCDs), including cardiovascular, chronic respiratory, metabolic, rheumatologic and neurologic disorders and cancers, which together are the predominant health problem of the 21st century. This proposed holistic strategy involves comprehensive patient-centered integrated care and multi-scale, multi-modal and multi-level systems approaches to tackle NCDs as a common group of diseases. Rather than studying each disease individually, it will take into account their intertwined gene-environment, socio-economic interactions and co-morbidities that lead to individual-specific complex phenotypes. It will implement a road map for predictive, preventive, personalized and participatory (P4) medicine based on a robust and extensive knowledge management infrastructure that contains individual patient information. It will be supported by strategic partnerships involving all stakeholders, including general practitioners associated with patient-centered care. This systems medicine strategy, which will take a holistic approach to disease, is designed to allow the results to be used globally, taking into account the needs and specificities of local economies and health systems.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
Human experimental pain models require standardized stimulation and quantitative assessment of the evoked responses. This approach can be applied to healthy volunteers and pain patients before and after pharmacological interventions. Standardized stimuli of different modalities (ie, mechanical, chemical, thermal or electrical) can be applied to the skin, muscles and viscera for a differentiated and comprehensive assessment of various pain pathways and mechanisms. Using a multi-modal, multi-tissue approach, new and existing analgesic drugs can be profiled by their modulation of specific biomarkers. It has been shown that biomarkers, for example, those related to the central integration of repetitive nociceptive stimuli, can predict efficacy of a given drug in neuropathic pain conditions. Human experimental pain models can bridge animal and clinical pain research, and act as translational research providing new possibilities for designing successful clinical trials. Proof-of-concept studies provide cheap, fast and reliable information on dose-efficacy relationships and how pain sensed in the skin, muscles and viscera are inhibited.
Resumo:
ims: Periodic leg movements in sleep (PLMS) are a frequent finding in polysomnography. Most patients with restless legs syndrome (RLS) display PLMS. However, since PLMS are also often recorded in healthy elderly subjects, the clinical significance of PLMS is still discussed controversially. Leg movements are seen concurrently with arousals in obstructive sleep apnoea (OSA) may also appear periodically. Quantitative assessment of the periodicity of LM/PLM as measured by inter movement intervals (IMI) is difficult. This is mainly due to influencing factors like sleep architecture and sleep stage, medication, inter and intra patient variability, the arbitrary amplitude and sequence criteria which tend to broaden the IMI distributions or make them even multi-modal. Methods: Here a statistical method is presented that enables eliminating such effects from the raw data before analysing the statistics of IMI. Rather than studying the absolute size of IMI (measured in seconds) we focus on the shape of their distribution (suitably normalized IMI). To this end we employ methods developed in Random Matrix Theory (RMT). Patients: The periodicity of leg movements (LM) of four patient groups (10 to 15 each) showing LM without PLMS (group 1), OSA without PLMS (group 2), PLMS and OSA (group 3) as well as PLMS without OSA (group 4) are compared. Results: The IMI of patients without PLMS (groups 1 and 2) and with PLMS (groups 3 and 4) are statistically different. In patients without PLMS the distribution of normalized IMI resembles closely the one of random events. In contrary IMI of PLMS patients show features of periodic systems (e.g. a pendulum) when studied in normalized manner. Conclusions: For quantifying PLMS periodicity proper normalization of the IMI is crucial. Without this procedure important features are hidden when grouping LM/PLM over whole nights or across patients. The clinical significance of PLMS might be eluded when properly separating random LM from LM that show features of periodic systems.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
We present studies of 9 modern (up to 400-yr-old) peat sections from Slovenia, Switzerland, Austria, Italy, and Finland. Precise radiocarbon dating of modern samples is possible due to the large bomb peak of atmospheric 14C concentration in 1963 and the following rapid decline in the 14C level. All the analyzed 14C profiles appeared concordant with the shape of the bomb peak of atmospheric 14C concentration, integrated over some time interval with a length specific to the peat section. In the peat layers covered by the bomb peak, calendar ages of individual peat samples could be determined almost immediately, with an accuracy of 23 yr. In the pre-bomb sections, the calendar ages of individual dated samples are determined in the form of multi-modal probability distributions of about 300 yr wide (about AD 16501950). However, simultaneous use of the post-bomb and pre-bomb 14C dates, and lithological information, enabled the rejection of most modes of probability distributions in the pre-bomb section. In effect, precise age-depth models of the post-bomb sections have been extended back in time, into the wiggly part of the 14C calibration curve.
Resumo:
OBJECTIVE Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. METHODS In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. RESULTS Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). CONCLUSIONS EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. SIGNIFICANCE Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches.