34 resultados para multi-modal logic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we propose a variational approach for multimodal image registration based on the diffeomorphic demons algorithm. Diffeomorphic demons has proven to be a robust and efficient way for intensity-based image registration. However, the main drawback is that it cannot deal with multiple modalities. We propose to replace the standard demons similarity metric (image intensity differences) by point-wise mutual information (PMI) in the energy function. By comparing the accuracy between our PMI based diffeomorphic demons and the B-Spline based free-form deformation approach (FFD) on simulated deformations, we show the proposed algorithm performs significantly better.
Resumo:
In the present multi-modal study we aimed to investigate the role of visual exploration in relation to the neuronal activity and performance during visuospatial processing. To this end, event related functional magnetic resonance imaging er-fMRI was combined with simultaneous eye tracking recording and transcranial magnetic stimulation (TMS). Two groups of twenty healthy subjects each performed an angle discrimination task with different levels of difficulty during er-fMRI. The number of fixations as a measure of visual exploration effort was chosen to predict blood oxygen level-dependent (BOLD) signal changes using the general linear model (GLM). Without TMS, a positive linear relationship between the visual exploration effort and the BOLD signal was found in a bilateral fronto-parietal cortical network, indicating that these regions reflect the increased number of fixations and the higher brain activity due to higher task demands. Furthermore, the relationship found between the number of fixations and the performance demonstrates the relevance of visual exploration for visuospatial task solving. In the TMS group, offline theta bursts TMS (TBS) was applied over the right posterior parietal cortex (PPC) before the fMRI experiment started. Compared to controls, TBS led to a reduced correlation between visual exploration and BOLD signal change in regions of the fronto-parietal network of the right hemisphere, indicating a disruption of the network. In contrast, an increased correlation was found in regions of the left hemisphere, suggesting an intent to compensate functionality of the disturbed areas. TBS led to fewer fixations and faster response time while keeping accuracy at the same level, indicating that subjects explored more than actually needed.
Resumo:
During the last decade, a multi-modal approach has been established in human experimental pain research for assessing pain thresholds and responses to various experimental pain modalities. Studies have concluded that differences in responses to pain stimuli are mainly related to variation between individuals rather than variation in response to different stimulus modalities. In a factor analysis of 272 consecutive volunteers (137 men and 135 women) who underwent tests with different experimental pain modalities, it was determined whether responses to different pain modalities represent distinct individual uncorrelated dimensions of pain perception. Volunteers underwent single painful electrical stimulation, repeated painful electrical stimulation (temporal summation), test for reflex receptive field, pressure pain stimulation, heat pain stimulation, cold pain stimulation, and a cold pressor test (ice water test). Five distinct factors were found representing responses to 5 distinct experimental pain modalities: pressure, heat, cold, electrical stimulation, and reflex-receptive fields. Each of the factors explained approximately 8% to 35% of the observed variance, and the 5 factors cumulatively explained 94% of the variance. The correlation between the 5 factors was near null (median ρ=0.00, range -0.03 to 0.05), with 95% confidence intervals for pairwise correlations between 2 factors excluding any relevant correlation. Results were almost similar for analyses stratified according to gender and age. Responses to different experimental pain modalities represent different specific dimensions and should be assessed in combination in future pharmacological and clinical studies to represent the complexity of nociception and pain experience.
Resumo:
BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
Resumo:
Ophthalmologists typically acquire different image modalities to diagnose eye pathologies. They comprise e.g., Fundus photography, Optical Coherence Tomography (OCT), Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Yet, these images are often complementary and do express the same pathologies in a different way. Some pathologies are only visible in a particular modality. Thus, it is beneficial for the ophthalmologist to have these modalities fused into a single patient-specific model. The presented article’s goal is a fusion of Fundus photography with segmented MRI volumes. This adds information to MRI which was not visible before like vessels and the macula. This article’s contributions include automatic detection of the optic disc, the fovea, the optic axis and an automatic segmentation of the vitreous humor of the eye.
Resumo:
The purpose of this article is to extend the organizational development diagnostics repertoire by advancing an approach that surfaces organizational identity beliefs through the elicitation of complex, multimodal metaphors by organizational members. We illustrate the use of such "Type IV" metaphors in a postmerger context, in which individuals sought to make sense of the implications of the merger process for the identity of their organization. This approach contributes to both constructive and discursive new organizational development approaches; and offers a multimodal way of researching organizational identity that goes beyond the dominant, mainly textual modality.
Resumo:
The Logic of Proofs~LP, introduced by Artemov, encodes the same reasoning as the modal logic~S4 using proofs explicitly present in the language. In particular, Artemov showed that three operations on proofs (application~$\cdot$, positive introspection~!, and sum~+) are sufficient to mimic provability concealed in S4~modality. While the first two operations go back to G{\"o}del, the exact role of~+ remained somewhat unclear. In particular, it was not known whether the other two operations are sufficient by themselves. We provide a positive answer to this question under a very weak restriction on the axiomatization of LP.
Resumo:
A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Hennessy-Milner property. Complete characterizations are obtained in the case of many-valued modal logics based on BL-chains (divisible MTL-chains) that are finite or have universe [0,1], including crisp Lukasiewicz, Gödel, and product modal logics.
Resumo:
Starting off from the usual language of modal logic for multi-agent systems dealing with the agents’ knowledge/belief and common knowledge/belief we define so-called epistemic Kripke structures for intu- itionistic (common) knowledge/belief. Then we introduce corresponding deductive systems and show that they are sound and complete with respect to these semantics.
Resumo:
Justification logics are refinements of modal logics where modalities are replaced by justification terms. They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a single realization theorem that uniformly connects all the normal modal logics formed from the axioms \$mathsfd\$, \$mathsft\$, \$mathsfb\$, \$mathsf4\$, and \$mathsf5\$ with their justification counterparts. The proof employs cut-free nested sequent systems together with Fitting's realization merging technique. We further strengthen the realization theorem for \$mathsfKB5\$ and \$mathsfS5\$ by showing that the positive introspection operator is superfluous.