13 resultados para multi-channel
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A search for supersymmetric particles in final states with zero, one, and two leptons, with and without jets identified as originating from b-quarks, in 4.7 fb(-1) of root s = 7 TeV pp collisions produced by the Large Hadron Collider and recorded by the ATLAS detector is presented. The search uses a set of variables carrying information on the event kinematics transverse and parallel to the beam line that are sensitive to several topologies expected in supersymmetry. Mutually exclusive final states are defined, allowing a combination of all channels to increase the search sensitivity. No deviation from the Standard Model expectation is observed. Upper limits at 95 % confidence level on visible cross-sections for the production of new particles are extracted. Results are interpreted in the context of the constrained minimal supersymmetric extension to the Standard Model and in supersymmetry-inspired models with diverse, high-multiplicity final states.
Resumo:
Superresolution from plenoptic cameras or camera arrays is usually treated similarly to superresolution from video streams. However, the transformation between the low-resolution views can be determined precisely from camera geometry and parallax. Furthermore, as each low-resolution image originates from a unique physical camera, its sampling properties can also be unique. We exploit this option with a custom design of either the optics or the sensor pixels. This design makes sure that the sampling matrix of the complete system is always well-formed, enabling robust and high-resolution image reconstruction. We show that simply changing the pixel aspect ratio from square to anamorphic is sufficient to achieve that goal, as long as each camera has a unique aspect ratio. We support this claim with theoretical analysis and image reconstruction of real images. We derive the optimal aspect ratios for sets of 2 or 4 cameras. Finally, we verify our solution with a camera system using an anamorphic lens.
Resumo:
Human behavior and psychological functioning is motivated and guided by individual goals. Motivational incongruence refers to states of insufficient goal satisfaction and is tightly related to psychological problems and even psychopathology. In the present study, individual levels of motivational incongruence were assessed with the incongruence-questionnaire (INC) in a healthy sample. In addition, multi-channel resting-state EEG was measured. Individual variations of EEG synchronization and spectral power were related to individual levels of motivational incongruence. For significant correlations, the relation to intracerebral sources of electrical brain activity was investigated with sLORETA. The results indicate that, even in a healthy sample with rather low degrees of motivational incongruence, this insufficient goal satisfaction is related to consistent changes in resting state brain activity. Upper Alpha band attenuation seems to be most indicative of increased levels of motivational incongruence. This is reflected not only in significantly reduced functional connectivity, but also in changes regarding the level of brain activation, as indicated by significant effects in the spectral power and LORETA analyses. Results are related to research investigating the upper Alpha band and are discussed in the framework of Grawe's consistency theory.
Resumo:
The temporal dynamics of the neural activity that implements the dimensions valence and arousal during processing of emotional stimuli were studied in two multi-channel ERP experiments that used visually presented emotional words (experiment 1) and emotional pictures (experiment 2) as stimulus material. Thirty-two healthy subjects participated (mean age 26.8 +/- 6.4 years, 24 women). The stimuli in both experiments were selected on the basis of verbal reports in such a way that we were able to map the temporal dynamics of one dimension while controlling for the other one. Words (pictures) were centrally presented for 450 (600) ms with interstimulus intervals of 1,550 (1,400) ms. ERP microstate analysis of the entire epochs of stimulus presentations parsed the data into sequential steps of information processing. The results revealed that in several microstates of both experiments, processing of pleasant and unpleasant valence (experiment 1, microstate #3: 118-162 ms, #6: 218-238 ms, #7: 238-266 ms, #8: 266-294 ms; experiment 2, microstate #5: 142-178 ms, #6: 178-226 ms, #7: 226-246 ms, #9: 262-302 ms, #10: 302-330 ms) as well as of low and high arousal (experiment 1, microstate #8: 266-294 ms, #9: 294-346 ms; experiment 2, microstate #10: 302-330 ms, #15: 562-600 ms) involved different neural assemblies. The results revealed also that in both experiments, information about valence was extracted before information about arousal. The last microstate of valence extraction was identical with the first microstate of arousal extraction.
Resumo:
Many psychotherapy researchers agree that emotional change is critical to therapeutic progress. In emotion-focused and Gestalt therapy, one technique to foster emotional change is the empty chair dialogue. Psychotherapy research has yielded ample evidence that this technique helps to alleviate longstanding interpersonal grievances (‘unfinished business’) and facilitates emotional change. Until now, little is known about the neurophysiological correlates of such emotional change. The present study thus aims at adding a further level of analysis to psychotherapy research, and may enrich knowledge about mechanisms of change. Neurophysiological correlates of emotional change were investigated using multi-channel electroencephalography. Individuals experiencing ‘unfinished business’ were guided by experienced therapists to participate in an empty chair dialogue. Event-related brain potentials were recorded before and after the intervention while participants were viewing pictures of the person central to their interpersonal grievance as well as pictures of control persons. Event related potentials are compared regarding topography and overall signal strength. Preliminary results will be discussed regarding neurophysiological mechanisms of action potentially occurring during emotional change.
Resumo:
The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.
Resumo:
bstract With its smaller size, well-known boundary conditions, and the availability of detailed bathymetric data, Lake Geneva’s subaquatic canyon in the Rhone Delta is an excellent analogue to understand sedimentary pro- cesses in deep-water submarine channels. A multidisciplinary research effort was undertaken to unravel the sediment dynamics in the active canyon. This approach included innovative coring using the Russian MIR sub- mersibles, in situ geotechnical tests, and geophysical, sedimentological, geochemical and radiometric analysis techniques. The canyon floor/levee complex is character- ized by a classic turbiditic system with frequent spillover events. Sedimentary evolution in the active canyon is controlled by a complex interplay between erosion and sedimentation processes. In situ profiling of sediment strength in the upper layer was tested using a dynamic penetrometer and suggests that erosion is the governing mechanism in the proximal canyon floor while sedimen- tation dominates in the levee structure. Sedimentation rates progressively decrease down-channel along the levee structure, with accumulation exceeding 2.6 cm/year in the proximal levee. A decrease in the frequency of turbidites upwards along the canyon wall suggests a progressive confinement of the flow through time. The multi-proxy methodology has also enabled a qualitative slope-stability assessment in the levee structure. The rapid sediment loading, slope undercutting and over-steepening, and increased pore pressure due to high methane concentrations hint at a potential instability of the proximal levees. Fur- thermore, discrete sandy intervals show very high methane concentrations and low shear strength and thus could cor- respond to potentially weak layers prone to scarp failures.
Resumo:
We study the sensitivity of large-scale xenon detectors to low-energy solar neutrinos, to coherent neutrino-nucleus scattering and to neutrinoless double beta decay. As a concrete example, we consider the xenon part of the proposed DARWIN (Dark Matter WIMP Search with Noble Liquids) experiment. We perform detailed Monte Carlo simulations of the expected backgrounds, considering realistic energy resolutions and thresholds in the detector. In a low-energy window of 2–30 keV, where the sensitivity to solar pp and 7Be-neutrinos is highest, an integrated pp-neutrino rate of 5900 events can be reached in a fiducial mass of 14 tons of natural xenon, after 5 years of data. The pp-neutrino flux could thus be measured with a statistical uncertainty around 1%, reaching the precision of solar model predictions. These low-energy solar neutrinos will be the limiting background to the dark matter search channel for WIMP-nucleon cross sections below ~2X 10-48 cm2 and WIMP masses around 50 GeV c 2, for an assumed 99.5% rejection of electronic recoils due to elastic neutrino-electron scatters. Nuclear recoils from coherent scattering of solar neutrinos will limit the sensitivity to WIMP masses below ~6 GeV c-2 to cross sections above ~4X10-45cm2. DARWIN could reach a competitive half-life sensitivity of 5.6X1026 y to the neutrinoless double beta decay of 136Xe after 5 years of data, using 6 tons of natural xenon in the central detector region.
Resumo:
PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.