26 resultados para mononuclear cell
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Umbilical cord blood (UCB) is a source of hematopoietic stem cells that initially was used exclusively for the hematopoietic reconstitution of pediatric patients. It is now suggested for use for adults as well, a fact that increases the pressure to obtain units with high cellularity. Therefore, the optimization of UCB processing is a priority.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.
Resumo:
Bovine papillomaviruses of types 1 and 2 (BPV-1 and -2) chiefly contribute to equine sarcoid pathogenesis. However, the mode of virus transmission and the presence of latent infections are largely unknown. This study established a PCR protocol allowing detection of
Resumo:
Caring for a spouse with Alzheimer's disease (AD) is associated with overall health decline and impaired cardiovascular functioning. This morbidity may be related to the effects of caregiving stress and impaired coping on beta(2)-adrenergic receptors, which mediate hemodynamic and vascular responses and are important for peripheral blood mononuclear cell (PBMC) trafficking and cytokine production. This study investigated the longitudinal relationship between stress, personal mastery, and beta(2)-adrenergic receptor sensitivity assessed in vitro on PBMC. Over a 5-year study, 115 spousal AD caregivers completed annual assessments of caregiving stress, mastery, and PBMC beta(2)-adrenergic receptor sensitivity, as assessed by in vitro isoproterenol stimulation. Heightened caregiving stress was associated with significantly decreased receptor sensitivity, whereas greater sense of personal mastery was associated with significantly increased receptor sensitivity. These results suggest that increased stress may be associated with a desensitization of beta(2)-receptors, which may contribute to the development of illness among caregivers. However, increased mastery is associated with increased receptor sensitivity, and may therefore serve as a resource factor for improved health in this population.
Resumo:
BACKGROUND AIMS The diverse phenotypic changes and clinical and economic disadvantages associated with the monolayer expansion of bone marrow-derived mesenchymal stromal cells (MSCs) have focused attention on the development of one-step intraoperative cells therapies and homing strategies. The mononuclear cell fraction of bone marrow, inclusive of discrete stem cell populations, is not well characterized, and we currently lack suitable cell culture systems in which to culture and investigate the behavior of these cells. METHODS Human bone marrow-derived mononuclear cells were cultured within fibrin for 2 weeks with or without fibroblast growth factor-2 supplementation. DNA content and cell viability of enzymatically retrieved cells were determined at days 7 and 14. Cell surface marker profiling and cell cycle analysis were performed by means of multi-color flow cytometry and a 5-ethynyl-2'-deoxyuridine incorporation assay, respectively. RESULTS Total mononuclear cell fractions, isolated from whole human bone marrow, was successfully cultured in fibrin gels for up to 14 days under static conditions. Discrete niche cell populations including MSCs, pericytes and hematopoietic stem cells were maintained in relative quiescence for 7 days in proportions similar to that in freshly isolated cells. Colony-forming unit efficiency of enzymatically retrieved MSCs was significantly higher at day 14 compared to day 0; and in accordance with previously published works, it was fibroblast growth factor-2-dependant. CONCLUSIONS Fibrin gels provide a simple, novel system in which to culture and study the complete fraction of bone marrow-derived mononuclear cells and may support the development of improved bone marrow cell-based therapies.
Resumo:
Asthma is a chronic inflammatory disease of the airways. The treatment of asthma is far from optimal and hence the need for novel therapeutic agents exists. The purpose of this study was to assess the anti-asthma effects of an enaminone, E121, and also its effects on human peripheral blood mononuclear cell proliferation and cytokine release. The effects of E121 were assessed in an ovalbumin-induced model of airway inflammation and airway hyperresponsiveness. In addition, the effects of E121 on phytohemagglutinin (PHA), anti-CD3 monoclonal antibody and lipopolysaccharide (LPS)-induced human peripheral blood mononuclear cell proliferation and cytokine release, respectively, were assessed. Treatment of mice with E121 significantly decreased the ovalbumin-induced increase in airway total cell influx and eosinophil infiltration and this was associated with an inhibition of ovalbumin-induced airway hyperresponsiveness. Moreover, E121 reduced PHA and anti-CD3-induced human peripheral blood mononuclear cell proliferation in vitro. E121 also inhibited PHA, anti-CD3 monoclonal antibody and LPS-induced cytokine release from human peripheral blood mononuclear cell cultures. These findings indicate that E121 exhibits anti-inflammatory and immunosuppressive activities.
Resumo:
Adalimumab is a fully humanized recombinant anti-tumour-necrosis-factor (TNF-alpha) monoclonal antibody which has been approved for rheumatoid arthritis, active ankylosing spondylitis, psoriatic arthritis and Crohn's disease. We report a case of alopecia areata (AA) universalis occurring 6 months after administration of adalimumab monotherapy in a patient with a long-standing history of psoriatic arthritis and psoriasis. The diagnosis was confirmed by a scalp biopsy which showed a peribulbar infiltrate of both CD4+ and CD8+ T cells, CD1a+ dendritic cells as well as CD68+ and CD163+ macrophages. In addition, immunofluorescence staining for TNF-alpha was found in the mononuclear cell infiltrate. This case suggests a complex role of TNF-alpha in the induction of AA.
Resumo:
OBJECTIVE: Estradiol (E(2)) is known to accelerate reendothelialization and thus prevent intimal thickening and in-stent restenosis after angioplasty. Transplantation experiments with ERalpha(-/-) mice have previously shown that E(2) acts through local and bone marrow cell compartments to enhance endothelial healing. However, the downstream mechanisms induced by E(2) to mediate endothelial repair are still poorly understood. METHODS AND RESULTS: We show here that after endovascular carotid artery injury, E(2)-enhanced endothelial repair is lost in osteopontin-deficient mice (OPN(-/-)). Transplantation of OPN(-/-) bone marrow into wild-type lethally irradiated mice, and vice versa, suggested that osteopontin plays a crucial role in both the local and the bone marrow actions of E(2). In the vascular compartment, using transgenic mice expressing doxycyclin regulatable-osteopontin, we show that endothelial cell specific osteopontin overexpression mimics E(2)-enhanced endothelial cell migration and proliferation in the regenerating endothelium. In the bone marrow cell compartment, we demonstrate that E(2) enhances bone marrow-derived mononuclear cell adhesion to regenerating endothelium in vivo, and that this effect is dependent on osteopontin. CONCLUSIONS: We demonstrate here that E(2) acceleration of the endothelial repair requires osteopontin, both for bone marrow-derived cell recruitment and for endothelial cell migration and proliferation.
Resumo:
BACKGROUND: The most prevalent drug hypersensitivity reactions are T-cell mediated. The only established in vitro test for detecting T-cell sensitization to drugs is the lymphocyte transformation test, which is of limited practicability. To find an alternative in vitro method to detect drug-sensitized T cells, we screened the in vitro secretion of 17 cytokines/chemokines by peripheral blood mononuclear cells (PBMC) of patients with well-documented drug allergies, in order to identify the most promising cytokines/chemokines for detection of T-cell sensitization to drugs. METHODS: Peripheral blood mononuclear cell of 10 patients, five allergic to beta-lactams and five to sulfanilamides, and of five healthy controls were incubated for 3 days with the drug antigen. Cytokine concentrations were measured in the supernatants using commercially available 17-plex bead-based immunoassay kits. RESULTS: Among the 17 cytokines/chemokines analysed, interleukin-2 (IL-2), IL-5, IL-13 and interferon-gamma (IFN-gamma) secretion in response to the drugs were significantly increased in patients when compared with healthy controls. No difference in cytokine secretion patterns between sulfonamide- and beta-lactam-reactive PBMC could be observed. The secretion of other cytokines/chemokines showed a high variability among patients. CONCLUSION: The measurement of IL-2, IL-5, IL-13 or IFN-gamma or a combination thereof might be a useful in vitro tool for detection of T-cell sensitization to drugs. Secretion of these cytokines seems independent of the type of drug antigen and the phenotype of the drug reaction. A study including a higher number of patients and controls will be needed to determine the exact sensitivity and specificity of this test.
Resumo:
Recent reports indicate that cytotoxic T cells are critically involved in contact hypersensitivity reactions in animals. In this study we sought to investigate the in vivo expression of cytotoxic granule proteins in the elicitation phase of allergic contact dermatitis in humans. Skin biopsy specimens were obtained from patients with allergic contact dermatitis (n = 8) and psoriasis (n = 6) and from controls with normal skin (n = 6). Expression of perforin and granzyme B was investigated by in situ hybridization and immunohistochemistry. In contrast to normal skin and psoriasis, a significant enhancement of perforin and granzyme B gene expression and immunoreactivity was observed in the mononuclear cell infiltrate of allergic contact dermatitis. Immunoreactivity for perforin and granzyme B was mainly found in the cytoplasm of lymphocytic cells, which were located in the dense perivascular infiltrate as well as at sites of marked spongiosis in the epidermis. Double immunostaining revealed that both CD4+ and CD8+ T cells are capable of expressing perforin and granzyme B. In conclusion, our data suggest that T-cell-mediated mechanisms involving cytotoxic granule proteins may elicit epidermal cell injury in vivo and thereby strongly contribute to the development of allergic contact dermatitis in humans.
Resumo:
ALS is the most common adult neurodegenerative disease that specifically affects upper and lower neurons leading to progressive paralysis and death. There is currently no effective treatment. Thus, identification of the signaling pathways and cellular mediators of ALS remains a major challenge in the search for novel therapeutics. Recent studies have shown that noncoding RNA molecules have a significant impact on normal CNS development and on causes and progression of human neurological disorders. To investigate the hypothesis that expression of the mutant SOD1 protein, which is one of the genetic causes of ALS, may alter expression of miRNAs thereby contributing to the pathogenesis of familial ALS, we compared miRNA expression in SH-SY5Y expressing either the wild type or the SOD1 protein using small RNA deep-sequencing followed by RT-PCR validation. This strategy allowed us to find a group of up and down regulated miRNAs, which are predicted to play a role in the motorneurons physiology and pathology. The aim of my work is to understand if these modulators of gene expression may play a causative role in disease onset or progression. To this end I have checked the expression level of these misregulated miRNAs derived from RNA-deep sequencing by qPCR on cDNA derived from ALS mice models at early onset of the disease. Thus, I’m looking for the most up-regulated one even in Periferal Blood Mononuclear Cell (PBMC) of sporadic ALS patients. Furthermore I’m functionally characterizing the most up-regulated miRNAs through the validation of bioinformatic-predicted targets by analyzing endogenous targets levels after microRNA transfection and by UTR-report luciferase assays. Thereafter I’ll analyze the effect of misregulated targets on pathogenesis or progression of ALS by loss of functions or gain of functions experiments, based on the identified up/down-regulation of the specific target by miRNAs. In the end I would define the mechanisms responsible for the miRNAs level misregulation, by silencing or stimulating the signal transduction pathways putatively involved in miRNA regulation.
Resumo:
Intestinal mononuclear phagocytes (iMNP) are critically involved in mucosal immunity and tissue homeostasis. Two major non-overlapping populations of iMNP have been identified in mice. CD103(+) iMNP represent a migratory population capable of inducing tolerogenic responses, whereas CX3CR1(+) iMNP are resident cells with disease-promoting potential. CX3CR1(+) iMNP can further be subdivided based on differential expression of CX3CR1. Using CX3CR1(GFP/+) ×RAG2(-/-) mice, we demonstrate that CX3CR1(hi) and CX3CR1(lo) iMNP clearly differ with respect to their morphological and functional properties. Compared with CX3CR1(hi) iMNP, CX3CR1(lo) iMNP are polarised towards pro-inflammatory responses already under homeostatic conditions. During a CD4(+) T-cell-induced colitis, CX3CR1(lo) cells accumulate in the inflamed mucosa and upregulate the expression of pro-inflammatory cytokines and triggering receptor expressed on myeloid cells-1 (TREM-1). In contrast, CX3CR1(hi) iMNP retain their non-inflammatory profile even during intestinal inflammation. These findings identify two functionally distinct iMNP subsets based on differential expression of CX3CR1 and indicate an unanticipated stability of iMNP.
Resumo:
The major endocannabinoids (ECs) arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) and related N-ethanolamines act as full and partial agonists at CB(1), CB(2), GPR55, PPAR and TRPV1 receptors to various degrees. These receptors are also expressed in immune cells like monocytes/macrophages where they regulate different cellular processes. In this study, potentially bioactive lipids in fetal bovine sera (FBS) were quantified by GC/MS. We found that several commercial FBS contain ECs and bioactive amounts of 2-AG (250-700 nM). We show that residual 2-AG from FBS can activate primary macrophages and increase migration and RANKL-stimulated osteoclastogenesis. Furthermore, 2-AG high-content sera specifically upregulated LPS-stimulated IL-6 expression in U937 cells. Polymyxin B beads may be used to selectively and efficiently remove 2-AG from sera, but not arachidonic acid and N-ethanolamines. In conclusion, 2-AG in cell culture media may significantly influence cellular experiments. CD14+ mononuclear cells which strongly express surface CB receptors may be particularly sensitive towards residual 2-AG from FBS. Therefore, the EC content in culture media should be controlled in biological experiments involving monocytes/macrophages.
Resumo:
Kinetic investigations in pediatric acute lymphoblastic leukemia (ALL) are based on all blast cells and, therefore, reflect the proliferative characteristics of the predominant immunophenotype of leukemic cells. Nothing is known about proliferation of immunologically defined rare subpopulations of leukemic cells. In this study, mononuclear cells from the bone marrow of 15 children with untreated CD19 B-cell precursor ALL were examined for proliferative features according to the immunophenotype. After exclusion of highly proliferating residual normal hematopoietic cells, ∼ 3% of blast cells were CD19 and showed a low percentage of cells in S-phase assessed by the bromodeoxyuridine labeling index (BrdU-LI): median BrdU-LI, 0.19% [interquartile range (IQR), 0.15-0.40%]. In contrast, a median BrdU-LI of 7.2% (IQR, 5.7-8.8%) was found for the major CD19 blast cell compartment. Staining smears of sorted CD19 cells for CD10 or CD34 revealed a small fraction of CD19CD10 or CD19CD34 blast cells. These cells were almost nonproliferating with a median BrdU-LI of <0.1% (IQR, 0-0.2%). This proliferative behavior is suggestive of a stem/progenitor cell function and, in addition, the low proliferative activity might render them more resistant to an antiproliferation-based chemotherapy. However, xenotransplantation experiments will be necessary to demonstrate a possible stem cell function.
Resumo:
A 6-year-old, neutered female Pembroke Welsh corgi was presented with a 1-month history of ataxia and panting. The clinical signs progressed until the dog became anorexic, obtunded and exhibited circling to the left. At necropsy examination, a mass was detected in the left forebrain, impinging on the cribriform plate. Microscopically, the mass was composed of sheets of round to pleomorphic neoplastic cells with vacuolated cytoplasm. Nuclear atypia, anisocytosis and anisokaryosis were common. Numerous bizarre, multinucleated giant cells containing 60 or more nuclei and giant mononuclear cells were present. The matrix contained abundant reticulin. Immunohistochemistry revealed the neoplastic cells uniformly to express vimentin, and a small number of neoplastic cells expressed glial fibrillary acid protein. A diagnosis of giant cell glioblastoma was made. Although well recognized in man, this tumour has been documented rarely in the veterinary literature.