49 resultados para monographs
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Dental erosion develops through chronic exposure to extrinsic/intrinsic acids with a low pH. Enamel erosion is characterized by a centripetal dissolution leaving a small demineralized zone behind. In contrast, erosive demineralization in dentin is more complex as the acid-induced mineral dissolution leads to the exposure of collagenous organic matrix, which hampers ion diffusion and, thus, reduces further progression of the lesion. Topical fluoridation inducing the formation of a protective layer on dental hard tissue, which is composed of CaF(2) (in case of conventional fluorides like amine fluoride or sodium fluoride) or of metal-rich surface precipitates (in case of titanium tetrafluoride or tin-containing fluoride products), appears to be most effective on enamel. In dentin, the preventive effect of fluorides is highly dependent on the presence of the organic matrix. In situ studies have shown a higher protective potential of fluoride in enamel compared to dentin, probably as the organic matrix is affected by enzymatical and chemical degradation as well as by abrasive influences in the clinical situation. There is convincing evidence that fluoride, in general, can strengthen teeth against erosive acid damage, and high-concentration fluoride agents and/or frequent applications are considered potentially effective approaches in preventing dental erosion. The use of tin-containing fluoride products might provide the best approach for effective prevention of dental erosion. Further properly designed in situ or clinical studies are recommended in order to better understand the relative differences in performance of the various fluoride agents and formulations.
Resumo:
How the effects of biotic factors are moderated by abiotic factors, and their consequences for species interactions, is generally understudied in ecology. A key abiotic feature of forests is regular canopy disturbances that create temporary patches, or “gaps,” of above-average light availability. Co-occurring in lowland primary forest of Korup National Park (Cameroon), Microberlinia bisulcata and Tetraberlinia bifoliolata are locally dominant, ectomycorrhizal trees whose seeds share predator guilds in masting years. Here, we experimentally tested the impact of small mammal predators upon seedling abundance, growth, and survivorship. In 2007, we added a fixed density of seeds of each species to exclosures at 48 gap–understory locations across 82.5 ha within a large Microberlinia grove, and at 15 locations outside it. For both species, small mammals removed more seeds in gaps than in understory, whereas this was reversed for seeds killed by invertebrates. Nonetheless, Microberlinia lost twice as many seeds to small mammals, and more to invertebrates in exclosures, than Tetraberlinia, which was more prone to a pathogenic white fungus. After six weeks, both species had greater seedling establishment in gaps than understory, and in exclosures outside compared to exclosures inside the grove. In the subsequent two-year period, seedling growth and survivorship peaked in exclosures in gaps, but Microberlinia had more seedlings' stems clipped by animals than Tetraberlinia, and more than twice the percentage of leaf area damaged. Whereas Microberlinia seedling performance in gaps was inferior to Tetraberlinia inside the grove, outside it Microberlinia had reduced leaf damage, grew taller, and had many more leaves than Tetraberlinia. No evidence was found for “apparent mutualism” in the understory as seedling establishment of both species increased away from (>25 m) large stems of either species, pointing to “apparent competition” instead. In gaps, Microberlinia seedling establishment was lower near Tetraberlinia than conspecific adults because of context-dependent small mammal satiation. Stage-matrix analysis suggested that protecting Microberlinia from small mammals could increase its population growth rate by 0.06. In the light of prior research we conclude that small mammals and canopy gaps play an important role in promoting species coexistence in this forest, and that their strong interaction contributes to Microberlinia's currently very poor regeneration.
Resumo:
When substance loss caused by erosive tooth wear reaches a certain degree, oral rehabilitation becomes necessary. Prior to the most recent decade, the severely eroded dentition could only be rehabilitated by the provision of extensive crown and bridge work or removable overdentures. As a result of the improvements in composite restorative materials, and in adhesive techniques, it has become possible to rehabilitate eroded dentitions in a less invasive manner. However, even today advanced erosive destruction requires the placement of more extensive restorations such as ceramic veneers or overlays and crowns. It has to be kept in mind that the etiology of the erosive lesions needs to be determined in order to halt the disease, otherwise the erosive process will continue to destroy tooth substance. This overview presents aspects concerning the restorative materials as well as the treatment options available to rehabilitate patients with erosion, from minimally invasive direct composite reconstructions to adhesively retained all-ceramic restorations. Restorative treatment is dependent on individual circumstances and the perceived needs and concerns of the patient. Long-term success is only possible when the cause is eliminated. In all situations, the restorative preparations have to follow the principles of minimally invasive treatment.
Resumo:
Erosive tooth wear in children is a common condition. The overlapping of erosion with mechanical forces like attrition or abrasion is probably in deciduous teeth more pronounced than in permanent teeth. Early erosive damage to the permanent teeth may compromise the dentition for the entire lifetime and require extensive restorative procedures. Therefore, early diagnosis of the condition and adequate preventive measures are of importance. Knowledge of the etiological factors for erosive tooth wear is a prerequisite for such measures. In children and adolescents (like in adults) extrinsic and intrinsic factors or a combination of them are possible reasons for the condition. Such factors are frequent and extensive consumption of erosive foodstuffs and drinks, the intake of medicaments (asthma), gastro-esophageal reflux (a case history is discussed) or vomiting. But also behavioral factors like unusual eating and drinking habits, the consumption of designer drugs and socio-economic aspects are of importance.
Resumo:
pH value, calcium, and phosphate and to a lesser extent fluoride content of a drink or foodstuff are important factors explaining erosive attack. They determine the degree of saturation with respect to tooth minerals, which is the driving force for dissolution. Solutions oversaturated with respect to dental hard tissue will not dissolve it. Addition of calcium (and phosphate) salts to erosive drinks showed protection of surface softening. Today, several Ca-enriched soft drinks are on the market or products with naturally high content in Ca and P are available (such as yoghurt), which do not soften the dental hard tissue. The greater the buffering capacity of the drink or food, the longer it will take for the saliva to neutralize the acid. The buffer capacity of a solution has a distinct effect on the erosive attack when the solution remains adjacent to the tooth surface and is not replaced by saliva. A higher buffer capacity of a drink or foodstuff will enhance the processes of dissolution because more ions from the tooth mineral are needed to render the acid inactive for further demineralization. Further, the amount of drink in the mouth in relation to the amount of saliva present will modify the process of dissolution. There is no clear-cut critical pH for erosion as there is for caries. Even at a low pH, it is possible that other factors are strong enough to prevent erosion.
Resumo:
There is some evidence that the presence of erosion is growing steadily. Because of different scoring systems, samples and examiners, it is difficult to compare and judge the outcome of the studies. Preschool children aged between 2 and 5 years showed erosion on deciduous teeth in 6-50% of the subjects. Young schoolchildren (aged 5-9) already had erosive lesions on permanent teeth in 14% of the cases. In the adolescent group (aged between 9 and 17) 11-100% of the young people examined showed signs of erosion. Incidence data (= increase of subjects with erosion) evaluated in three of these studies were 12% over 2 years, 18% over 5 years and 27% over 1.5 years. In adults (aged between 18 and 88), prevalence data ranged between 4 and 82%. Incidence data are scarce; only one study was found and this showed an incidence of 5% for the younger and 18% for the older examined group (= increase of tooth surfaces with erosion). Prevalence data indicated that males had somewhat more erosive tooth wear than females. The distribution of erosion showed a predominance of occlusal surfaces (especially mandibular first molars), followed by facial surfaces (anterior maxillary teeth). Oral erosion was frequently found on maxillary incisors and canines. Overall, prevalence data are not homogeneous. Nevertheless, there is already a trend for more pronounced rate of erosion in younger age groups. Therefore, it is important to detect at-risk patients early to initiate adequate preventive measures.
Resumo:
A prerequisite for preventive measures is to diagnose erosive tooth wear and to evaluate the different etiological factors in order to identify persons at risk. No diagnostic device is available for the assessment of erosive defects. Thus, they can only be detected clinically. Consequently, erosion not diagnosed in the early stage may render timely preventive measures difficult. In order to assess the risk factors, patient should record their dietary intake for a distinct period of time. Then a dentist can determine the erosive potential of the diet. Particularly, patients with more than four dietary acid intakes have a higher risk for erosion when other risk factors (such as holding the drink in the mouth) are present. Regurgitation of gastric acids (reflux, vomiting, alcohol abuse, etc.) is a further important risk factor for the development of erosion which has to be taken into account. Based on these analyses, an individually tailored preventive program may be suggested to the patients. It may comprise dietary advice, optimization of fluoride regimes, stimulation of salivary flow rate, use of buffering medicaments and particular motivation for nondestructive toothbrushing habits with a low abrasive toothpaste. The frequent use of fluoride gel and fluoride solution in addition to fluoride toothpaste offers the opportunity to reduce somewhat abrasion of tooth substance. It is also advisable to avoid abrasive tooth cleaning and whitening products, since they may remove the pellicle and may render teeth more susceptible to erosion. Since erosion, attrition and abrasion often occur simultaneously all causative components must be taken into consideration when planning preventive strategies.