28 resultados para molybdenum 101

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Auscultatory nonmercury manual devices seem good alternatives for the mercury sphygmomanometers in the clinic and for research settings, but individual internal validation of each device is time-consuming. The aim of this study was to validate a new technique capable of testing two devices simultaneously, based on the International protocol of the European Society of Hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report molybdenum isotope compositions and concentrations in water samples from a variety of river catchment profiles in order to investigate the influence of anthropogenic contamination, catchment geology, within-river precipitation, and seasonal river flow variations on riverine molybdenum. Our results show that the observed variations in δ98/95Mo from 0‰ to 1.9‰ are primarily controlled by catchment lithology, particularly by weathering of sulfates and sulfides. Erosion in catchments dominated by wet-based glaciers leads to very high dissolved molybdenum concentrations. In contrast, anthropogenic inputs affect neither the concentration nor the isotopic composition of dissolved molybdenum in the rivers studied here. Seasonal variations are also quite muted. The finding that catchment geology exerts the primary control on the delivery of molybdenum to seawater indicates that the flux and isotope composition of molybdenum to seawater has likely varied in the geologic past.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present stable isotope data for vertical profiles of dissolved molybdenum of the modern euxinic water columns of the Black Sea and two deeps of the Baltic Sea. Dissolved molybdenum in all water samples is depleted in salinity-normalized concentration and enriched in the heavy isotope (δ98Mo values up to + 2.9‰) compared to previously published isotope data of sedimentary molybdenum from the same range of water depths. Furthermore, δ98Mo values of all water samples from the Black Sea and anoxic deeps of the Baltic Sea are heavier than open ocean water. The observed isotope fractionation between sediments and the anoxic water column of the Black Sea are in line with the model of thiomolybdates that scavenge to particles under reducing conditions. An extrapolation to a theoretical pure MoS42− solution indicates a fractionation constant between MoS42− and authigenic solid Mo of 0.5 ± 0.3‰. Measured waters with all thiomolybdates coexisting in various proportions show larger but non-linear fractionation. The best explanation for our field observations is Mo scavenging by the thiomolybdates, dominantly — but not exclusively — present in the form of MoS42−. The Mo isotopic compositions of samples from the sediments and anoxic water column of the Baltic Sea are in overall agreement with those of the Black Sea at intermediate depth and corresponding sulphide concentrations. The more dynamic changes of redox conditions in the Baltic deeps complicate the Black Sea-derived relationship between thiomolybdates and Mo isotopic composition. In particular, the occasional flushing/mixing, of the deep waters, affects the corresponding water column and sedimentary data. δ98Mo values of the upper oxic waters of both basins are higher than predicted by mixing models based on salinity variations. The results can be explained by non-conservative behaviour of Mo under suboxic to anoxic conditions in the shallow bottom parts of the basin, most pronounced on the NW shelf of the Black Sea.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

KBPA-101 is a human monoclonal antibody of the immunoglobulin M isotype, which is directed against the O-polysaccharide moiety of Pseudomonas aeruginosa serotype O11. This double-blind, dose escalation study evaluated the safety and pharmacokinetics of KBPA-101 in 32 healthy volunteers aged 19 to 46 years. Each subject received a single intravenous infusion of KBPA-101 at a dose of 0.1, 0.4, 1.2, or 4 mg/kg of body weight or placebo infused over 2 h. Plasma samples for pharmacokinetic assessments were taken before infusion as well as 0.25, 0.5, 1, 2, 2.5, 4, 6, 8, 12, 24, 36, and 48 h and 4, 7, 10, and 14 days after start of dosing. Plasma concentrations of KBPA-101 were detected with mean maximum concentrations of drug in plasma of 1,877, 7,571, 24,923, and 83,197 ng/ml following doses of 0.1, 0.4, 1.2, and 4.0 mg/kg body weight, respectively. The mean elimination half-life was between 70 and 95 h. The mean volume of distribution was between 4.76 and 5.47 liters. Clearance ranged between 0.039 and 0.120 liters/h. At the highest dose of 4.0 mg/kg, plasma KBPA-101 levels were greater than 5,000 ng/ml for 14 days. KBPA-101 exhibited linear kinetics across all doses. No anti-KBPA-101 antibodies were detected after dosing in any subject. Overall, the human monoclonal antibody KBPA-101 was well tolerated over the entire dose range in healthy volunteers, and no serious adverse events have been reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry- type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between −0.48‰ and +0.40‰, with a median at −0.05‰. The median Mo isotope composition increases from early magmatic (−0.29‰) to hydrothermal (−0.05‰) breccia mineralization (median bulk breccia = −0.17‰) to late stockwork veining (+0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g−1 Mo has δ98Mo = −0.57‰ and is lighter than all molybde- nites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo iso- tope composition of magmatic–hydrothermal molybdenites. Δ1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. Δ2Mo: Magmatic–hydrothermal fluids preferentially incorporate heavy Mo iso- topes upon fluid exsolution. Δ3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crys- tallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal dynamics of molybdenum (Mo) were studied in the water column of two tidal basins of the German Wadden Sea (Sylt-Rømø and Spiekeroog) between 2007 and 2011. In contrast to its conservative behaviour in the open ocean, both, losses of more than 50% of the usual concentration level of Mo in seawater and enrichments up to 20% were observed repeatedly in the water column of the study areas. During early summer, Mo removal by adsorption on algae-derived organic matter (e.g. after Phaeocystis blooms) is postulated to be a possible mechanism. Mo bound to organic aggregates is likely transferred to the surface sediment where microbial decomposition enriches Mo in the pore water. First δ98/95Mo data of the study area disclose residual Mo in the open water column being isotopically heavier than MOMo (Mean Ocean Molybdenum) during a negative Mo concentration anomaly, whereas suspended particulate matter shows distinctly lighter values. Based on field observations a Mo isotope enrichment factor of ε = −0.3‰ has been determined which was used to argue against sorption on metal oxide surfaces. It is suggested here that isotope fractionation is caused by biological activity and association to organic matter. Pelagic Mo concentration anomalies exceeding the theoretical salinity-based concentration level, on the other hand, cannot be explained by replenishment via North Sea waters alone and require a supply of excess Mo. Laboratory experiments with natural anoxic tidal flat sediments and modelled sediment displacement during storm events suggest fast and effective Mo release during the resuspension of anoxic sediments in oxic seawater as an important process for a recycling of sedimentary sulphide bound Mo into the water column.